SIMPLIFIED DESIGN OF REINFORCED CONCRETE SLABS AND BEAMS

MD. MAHMUDUN NOBE
NASIMA SULTANA
A.F.M. ASHIK RAHMAN

DEPARTMENT OF CIVIL ENGINEERING
AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNLOLOGY

SIMPLIFIED DESIGN OF REINFORCED CONCRETE SLABS AND BEAMS

A Thesis

Submitted By:

MD. MAHMUDUN NOBE

NASIMA SULTANA
A.F.M. ASHIK RAHMAN

Student ID:
12.01.03.078
12.01.03.079

In partial fulfillment of requirements for the degree of
Bachelor of Science in Civil Engineering
Under the Supervision of
Dr. ENAMUR RAHIM LATIFEE
Associate Professor
Department of Civil Engineering

APPROVED AS TO STYLE AND CONTENT

BY

Dr. ENAMUR RAHIM LATIFEE

Associate Professor Department of Civil Engineering

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY 141-142 LOVE ROAD, TEJGAON INDUSTRIAL AREA, DHAKA-1208
 JUNE 2016

DECLARATION

The work performed in this thesis for the achievement of the degree of Bachelor of Science in Civil Engineering is "A study on Simplified Design of Reinforced Concrete Slabs and Beams". The whole work is carried out by the authors under the strict and friendly supervision of Dr. Enamur Rahim Latifee, Associate Professor, Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh.

Neither this thesis nor any part of it is submitted or is being simultaneously submitted for any degree at any other institutions.

Md. Mahmudun Nobe

12.01.03.078
\qquad
Nasima Sultana
12.01.03.079
\qquad
A.F.M. Ashik Rahman
12.01.03.059

TO OUR

BELOVED PARENTS AND TEACHERS

ACKNOWLEDGEMENT

There are no proper words to convey our deep gratitude and respect for our thesis supervisor, Dr. Enamur Rahim Latifee, Associate Professor, Honorable faculty member, Department of Civil Engineering, Ahsanulllah University of Science and Technology, for his unrestricted personal guidance throughout this study and for bringing out the best of our abilities. His supervision, encouragement, assistance and invaluable suggestion at all stages of the work made it possible to complete this work.

A special thanks to Debasish Sen, Lecturer, Department of Civil Engineering and Md. Rashedul Kabir, Lecturer, Department of Civil Engineering, Ahsanullah University of Science and Technology. We also thanks full to Md. Aminul Islam, Lecturer, Department of Civil Engineering, Dhaka International University, for JavaScript coding.

We would like to express our gratitude to all our teachers and professors who taught us during the undergraduate time.

We would like to thank our classmates and friends for their continued help and encouragement.

Last but not the least, we deeply thank our parents and siblings for their unconditional trust, timely encouragement, endless patience and supporting us spiritually throughout our life.

ABSTRACT

Traditional method of building design includes several steps, which is often very lengthy and time consuming. It is sometimes very much complex to understand for the engineering students as well as young designers. So the concept of simplified building design is introduced. The main difference between simplified building design and traditional method of building design is the assumption of certain parameters. Design procedure includes several equations which contains certain parameters. In simplified design, some of the parameters are made constant, to shorten the design procedure and to make the design much more time efficient. The parameters like strength of reinforcement and properties of cement are made constant depending on availability of the material. This paper on "Simplified Design of Reinforced Concrete Slabs and Beams" was prepared by applying the provisions contained in ACI Standard 318, Building Code Requirements for Structural Concrete. The ACI 318 standard applies to all types of building uses; structures of all heights ranging from the very tall high-rise down to singlestory buildings; facilities with large areas as well as those of nominal size. This paper has been written as a timesaving aid for use by those who consistently seek ways to simplify design procedures. The first part of this paper contains the design steps of one way slab along with an example. The design procedure includes determination of the thickness of the slab and its reinforcement detailing. There are several methods for determining the slab thickness. It can be determined by determining the value of α (the relative stiffness of the beam and slab spanning in either direction). Thickness can also be determined by using the formula $\frac{\text { perimeter }}{145}$. The design steps for simplified beam design are also included in the paper. This paper also includes minimum and maximum number of bars in a single layer for beams of various widths. In case of beam stirrups, the selection and spacing of stirrups can be simplified if the spacing is expressed as a function of the
effective depth. A comparison table is developed which includes the design live loads for various occupancies suggested by different codes. In simplified design, design load \& live load are considered in accordance of the code. If wind load, resistance to earthquake, induced forces, earth or liquid pressure, impact effects or structural effects of differential settlement need to be included in the design, such effects should be considered separately.

TABLE OF CONTENTS

Declaration I
Acknowledgement III
Abstract IV
Table of contents VI
List of figures IX
List of tables XII
List of symbols and abbreviations XIV
Chapter 01: INTRODUCTION
Introduction 02
Chapter 02: LITERATURE REVIEW
2.1 One way slab 07
2.1.1 Design steps of one way slab 07
2.2 Two way slab 11
2.2.1 Determination of thickness of slab 12
2.2.2 Calculation of alpha 16
2.3 Beam 19
2.3.1 Simplified design of beam 19
2.3.2 Minimum and maximum number of bars in a single layer for beams of various widths 29
2.3.3 Selection of stirrups for economy 32
2.3.4 Simplified design of beam stirrup 33
2.4 Development length 34
2.4.1 Cranked bar for slab 34
2.4.2 Bar cutoff for beam 35
2.5 Least Squares ($\mathbf{R}^{\mathbf{2}}$) 35
2.6 Comparison table 37
2.6.1 Comparison table of design live loads for various occupancies suggested by different codes 37
Chapter 03: METHODOLOGY AND EXPERIMENTAL WORK
3.1 Two way slab 40
3.1.1 Simplified method of determination of thickness 40
3.1.2 Design Procedure of Two-way Slabs using ACI Moment Coefficients 53
3.1.3 Relationship between length and steel area 62
3.2 Beam 69
3.2.1 Design steps of simplified beam design (Flexure design) 69
3.2.2 Comparison table of required steel area for full roh and half roh of beam 70
Chapter 04: RESULTS AND DISCUSSION
4.1 One way slab 74
4.1.1 Simplified design of one way slab 74
4.2 Two way slab 76
4.2.1 Least Squares $\left(R^{2}\right)$ values of graphs for slab thickness determination 76
4.2.2 Least Squares $\left(\mathrm{R}^{2}\right)$ values of graphs for the relation between length and steel area 77
4.2.3 Simplified design of a two way slab 85
4.3 Beam 87
4.3.1 Simplified design of a beam (Flexure design) 87
4.3.2 Maximum and minimum no. of bars in a single layer of beam 90
4.3.3 Simplified design of beam (Shear design) 91
Chapter 05: CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 95
5.2 Recommendations 96
Appendix 97
References 130

LIST OF FIGURES

Figure No.	Name of the figure	Page No.
2.1	Minimum Thicknesses for Beams and One-Way Slabs	10
2.2	Parameter F governing minimum thickness of two-way slabs	15
2.3 (a)	Section for I_{b} - Edge beam	16
2.3 (b)	Section for I_{s} - Edge beam	16
2.3 (c)	Section for I_{b} - Interior beam	17
2.3 (d)	Section for I_{s} - Interior beam	17
2.4	Minimum Slab Thickness for Two-Way Slab Systems	18
2.5 (a)	Design chart for member sizing ($\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$)	23
2.5 (b)	Design chart for member sizing ($\mathrm{f}_{\mathrm{y}}=72.5 \mathrm{ksi}$)	24
2.6 (a)	Design chart for steel area ($\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$)	27
2.6 (b)	Design chart for steel area ($\mathrm{f}_{\mathrm{y}}=72.5 \mathrm{ksi}$).	27
2.7	Cover and spacing requirements for Tables 2.8 and 2.9	31
2.8	Rebar bend points in approximately equal spans with uniformly distributed loads	34
2.9	Rebar cutoff points in approximately equal spans with uniformly distributed loads	35
3.1	$\frac{\mathrm{P}_{\text {Inner }}}{145}$ (in) vs Thickness corresponding α, (in) diagram	46
3.2	$\frac{\mathrm{Pc} / \mathrm{c}}{145}$ (in) vs Thickness corresponding α, (in) diagram	46
3.3	$\frac{\mathrm{P}_{\text {Outer }}}{145}$ (in) vs Thickness corresponding α, (in) diagram	47
3.4	$\frac{\mathrm{P}}{150}$ (in) vs Thickness corresponding α, (in) diagram	47
3.5	$\frac{\mathrm{P}}{160}$ (in) vs Thickness corresponding α, (in) diagram	48
3.6	$\frac{\mathrm{P}}{180}$ (in) vs Thickness corresponding α, (in) diagram	48

Figure No.	Name of the figure	Page No.
3.7	Two-way slab floor with beams on column lines	49
3.8	Slab panel orientation and case types	58
3.9	Reinforcement details of slab in plan (Example \#02)	61
4.1	One way slab design webpage screenshot	75
4.2	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Linear trend line)	78
4.3	- A_{s} ($\mathrm{in}^{2} / \mathrm{ft}$) vs Short span (in) diagram. (Linear trend line)	78
4.4	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Linear trend line)	79
4.5	- $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Linear trend line)	79
4.6	Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in). (Linear trend line)	80
4.7	$+\mathrm{A}_{\mathrm{s}}$ (in ${ }^{2} / \mathrm{ft}$) vs Short span (in) diagram. (Polynomial trend line, order 2)	81
4.8	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Polynomial trend line, order 2)	81
4.9	$+\mathrm{A}_{\mathrm{s}}$ (in ${ }^{2} / \mathrm{ft}$) vs Long span (in) diagram. (Polynomial trend line, order 2)	82
4.10	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Polynomial trend line, order 2)	82
4.11	Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in). (Polynomial trend line, order 2)	83
4.12	Two way slab design webpage screenshot	86
4.13	Beam design webpage screenshot	89
4.14	Maximum and minimum no. of bars in a single layer of beam excel file screenshot	90
4.15 (a)	Design of shear of beam excel file screenshot	91
4.15 (b)	Design of shear of beam excel file screenshot	92
4.15 (c)	Design of shear of beam excel file screenshot	93
A. 01	Partial plan of a slab (for alpha calculation)	98
A. 02	Partial plan of a slab (for alpha calculation)	99
A. 03	Partial plan of a slab (for alpha calculation)	100
A. 04	Partial plan of a slab (for alpha calculation)	101

Figure No.	Name of the figure	Page No.
A.05	Partial plan of a slab (for alpha calculation)	102
A.06	Partial plan of a slab (for alpha calculation)	103
A.07	Partial plan of a slab (for alpha calculation)	104
A.08	Partial plan of a slab (for alpha calculation)	105
A.09	Partial plan of a slab (for alpha calculation)	106
A.10	Partial plan of a slab (for alpha calculation)	107
A.11	Reinforcement details of a slab (Example \#04)	113
A.12	Reinforcement details of a slab (Example \#05)	117
A.13	Simplified method for stirrup spacing (Example \#07)	121

LIST OF TABLES

Table No.	Name of the table	Page No.
2.1	Minimum thickness h of nonprestressed one way slabs	07
2.2	Moment and shear values using ACI coefficients	08
2.3	Minimum thickness of slabs without interior beams	13
2.4	Maximum allowable computed deflections	14
2.5	Steel ratio (ρ) for 0.005 tensile strain at outer tension steel layer	21
2.6	Effective flange width	25
2.7	Minimum thickness of nonprestressed beams	25
2.8	Minimum number of bars in a single layer	29
2.9	Maximum number of bars in a single layer	30
2.10	Minimum beam widths for stirrups	32
2.11	Concrete shear strength design values for $\mathrm{f}_{\mathrm{c}}^{\prime}=4000 \mathrm{psi}$	33
2.12	Values of $\varphi \mathrm{V}_{\mathrm{s}}\left(\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}\right)$	34
2.13	Table of design live loads for various occupancies suggested by different codes	37
3.1	Table for $\mathrm{C}_{\mathrm{A} \text { neg }}$ and $\mathrm{C}_{\mathrm{B} \text { neg }}$	54
3.2	Table for $\mathrm{C}_{\mathrm{ADL} \text { pos }}$ and $\mathrm{C}_{\mathrm{B} \text { dL pos }}$	55
3.3	Table for $\mathrm{C}_{\mathrm{ALL} \text { pos }}$ and $\mathrm{C}_{\mathrm{BLL} \text { pos }}$	56
3.4	Comparison table for required steel area for full roh and half roh of beam	71
4.1	R^{2} (Least Squares) values of graphs for slab thickness determination	77
4.2	R^{2} (Least Squares) values of graphs for the length vs steel area relationship (Linear trend line)	84

Table No.	Name of the table	Page No.
4.3	R^{2} (Least Squares) values of graphs for the length vs steel area relationship (Polynomial trend line, order 2)	84
A.01 (a)	Design loads for various occupancy (According to ASCE)	123
A.01 (b)	Design loads for various occupancy (According to ASCE)	124
A.01 (c)	Design loads for various occupancy (According to ASCE)	125
A.02	Design loads for various occupancy (According to BNBC)	126
A.03 (a)	Design loads for various occupancy (According to IBC)	127
A.03 (b)	Design loads for various occupancy (According to IBC)	128
A.04	Design loads for various occupancy (According to UBC)	129
A.05 (a)	Design loads for various occupancy (According to Euro Code)	130
A.05 (b)	Design loads for various occupancy (According to Euro Code)	130

LIST OF SYMBOLS AND ABBREVIATIONS

$\mathrm{ACI}=$ American Concrete Institute.

ASCE $=$ American Society of Civil Engineers.

BNBC = Bangladesh National Building Code.

IBC $=$ International Building Code.

UBC $=$ Uniform Building Code .

EN = Euro/British Code.

DDM =Direct Design Method.

EFM $=$ Equivalent Frame Method.
DL = Dead load.

LL = Live load.
$1=$ Length of span.
$1_{n}=$ Length of clear span.
$1_{A}=$ Length of clear span in short direction.
$1_{B}=$ Length of clear span in long direction.
$\mathrm{A}_{\mathrm{s}}=$ Area of steel.
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$ Compressive strength of concrete.
$\mathrm{f}_{\mathrm{y}}=$ Grade/Yield strength of steel.
$\mathrm{h}=$ Thickness of slab.
$\beta=$ Ratio of clear span in long direction to clear span in short direction. $\alpha=$ Stiffness ratio of beam to slab.
$\mathrm{E}=$ Modulus of elasticity.
$\mathrm{I}=$ Moment of inertia.
$\mathrm{R}^{2}=$ Least Squares.
$\mathrm{P}=$ Perimeter.
$\rho=$ Steel ratio.

Chapter 01
 INTRODUCTION

This paper was prepared for the purpose of suggesting possible ways of reducing design time in applying the provisions contained in the ACI 318-11 Building Code Requirements for Structural Concrete. The ACI 318 standard applies to all types of building uses; structures of all heights ranging from the very tall high-rise down to single-story buildings; facilities with large areas as well as those of nominal size; buildings having complex shapes and those primarily designed as uncomplicated boxes; and buildings requiring structurally intricate or innovative framing systems in contrast to those of more conventional or traditional systems of construction. The general provisions developed to encompass all these extremes of building design and construction tend to make the application of ACI 318 complex and time consuming. However, this need not necessarily be the case, as is demonstrated in the paper. This paper has been written as a timesaving aid for use by those who consistently seek ways to simplify design procedures.

A complex code is unavoidable since it is necessary to address simple and complex structures in the same document. The purpose of this paper is to give practicing engineers some way of reducing the design time required for smaller projects, while still complying with the letter and intent of the ACI Standard 318, Building Code Requirements for Structural Concrete. The simplification of design with its attendant savings in design time result from avoiding building member proportioning details and material property selections which make it necessary to consider certain complicated provisions of the ACI Standard. These situations can often be avoided by making minor changes in the design approach. The simplified design procedures presented in this manual are an attempt to satisfy the various design considerations that need to be addressed in the structural design and detailing of primary framing members of a reinforced concrete building by the simplest and quickest procedures possible. The simplified design material is intended for use by those well versed in the design principles of reinforced concrete and completely familiar with the design provisions of ACI 318. It aims to arrange the information in the code in an organized step-by-step procedure for the building and member design. The formulae and language avoid complicated legal terminology without changing the intent or the objective of the code. As noted above, this paper is written solely as a time saving
design aid; that is, to simplify design procedures using the provisions of ACI 318 for reinforced concrete buildings of moderate size and height.

Structural design is the set of decisions, inventions, and plans that results in a fully described structure, ready for construction. To get to that fully described structure in a practical manner is the designer's pragmatic task. To achieve that task, designers typically use information from previous design, from observations of previously built structures, from result of research, and from the general body of publications that record to collective experience of concrete construction. Invention, innovation, and experimentation help to advance knowledge, but experience provides the confidence to trust our design practices.

The materials in this paper are not intended for well-trained, experienced structural engineers but rather for people who are interested in the topic but lack both training and experience in structural design. With this readership in mind, the computational work here is reduced to a minimum, using mostly simple mathematical procedures. A minimum background for the reader is assumed in fundamentals of structural mechanics.

The design work presented here conforms in general with the 2011 edition of Building Code Requirements for Structural Concrete, ACI 318-11, which is published by the American Concrete Institute and is commonly referred to as the ACI Code. For general reference, information is used from Minimum Design Loads for Buildings and Other Structures, SEI/ASCE 7-02, published by the American Society of Civil Engineers, from the 1997 edition of the Uniform Building Code, Volume 2: Structural Engineers Provisions, published by the International Conference of Building Officials, and from the 2007 edition of the Bangladesh National Building Code, is commonly referred to as the BNBC. For any actual design work, however, the reader is cautioned to use the codes currently in force in the location of the construction.

There are a lot of commercial softwares available to solve structural design problems such as ETABS, STAAD Pro, etc. However, to use these softwares, a person must have some basic civil engineering knowledge and it also requires detail information input for modeling. The engineers, architects and ordinary people including home owner, contractors and others do not have any handy software available to get very quick design and estimation of materials. Moreover, no unpaid tool is available for them to have an idea of the size and cost of building elements, such as slab, beam thickness, total steel by weight etc. and even paid softwares need detail data input. To overcome these shortcomings of the modern day softwares and to empower the engineers, architects and others to have structural design and estimated materials ready with very simple inputs; a web based, free of cost application is developed according to ACI-318-11 with visual output. The user including the engineer, the architect, and common non-technical person can give very simple inputs (e.g. slab width, length etc.) in a webpage and instantly get the visual results there. It can be used for initial structural design, verifying existing design and detail estimation of materials. There are also a lot of methods for design a reinforced concrete building, but here we used simplified design method of reinforced concrete buildings.

The aim is to create a simplification in the design process with minimum user input. The design aids in the form of graphs, are being generated for regular casesresidential/commercial. The scope is limited to moderate size and height of buildings. A website has been created to benefit the user- free to use.

Simplified Web based online Reinforced Concrete Structure Design Tools is a JavaScript language based online programming webpage- free to be used online or offline, in case one wants to save the web page. No login required there. Some designs tools have been done in Microsoft office excel worksheet and uploaded to internet via Google drive. So one can easily use those tools in internet without installing Microsoft office in their computer.

Since we started our thesis by simplification of one way slab, but till now we have completed one way slab, two way slab and beam design (flexural and shear) for both simplified design method and also for simplified web based online reinforced concrete building design tools. We hope to cover the full building solution in near future.

Chapter 02

LITERATURE REVIEW

2.1 One way slab

A rectangular reinforced concrete slab which spans a distance very much greater in one direction than the other; under these conditions, most of the load is carried on the shorter span. This type of slab is called one way slab.

2.1.1 Design steps of one way slab

Step 01: Determination of minimum slab thickness.

Determine minimum slab thickness h (in), which depends on length of span 1 (in) and support condition, according to Table 2.1.

Table 2.1: Minimum thickness h of nonprestressed one way slabs. (ACI Code 318-11 section 9.5.2, Table 9.5 (a))

Support Condition	Minimum thickness, h (in)
Simply supported	$1 / 20$
One end continuous	$1 / 24$
Both ends continuous	$1 / 28$
Cantilever	$1 / 10$

Note 2.1: If the slab rests freely on it's supports, the span length may be taken equal to the clear span plus the depth of the slab but need not exceed the distance between centers of supports, according to ACI Code 8.7.1. Slab thickness is rounded to next higher $1 / 4 \mathrm{in}$. for slab up to 6 in. thickness. The concrete portion below the reinforcement should the requirements of ACI Code 7.7.1, calling for $3 / 4 \mathrm{in}$. below the bottom of the steel.

Step 02: Calculation of factored load.
$\mathrm{W}_{\mathrm{DL}}=1.2 * \mathrm{DL}$ and $\mathrm{W}_{\mathrm{LL}}=1.6^{*} \mathrm{LL}$;
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{DL}}+\mathrm{W}_{\mathrm{LL}}$
Where DL= Total dead load (i.e.: Slab self weight, Floor finish, Partition wall, Plaster etc.)

LL= Live load.

Step 03: Determination of factored moments.

Factored moment coefficient found in Table 2.2.
Table 2.2: Moment and shear values using ACI coefficients. (ACI Code 318-11, section
8.3.3)

Positive moment
End spans
If discontinuous end is unrestrained
$\frac{1}{11} w_{u} l_{n}^{2}$

If discontinuous end is integral with the support
Interior spans
$\frac{1}{16} w_{u} l_{n}^{2}$
Negative moment at exterior face of first interior support
Two spans
$\frac{1}{9} w_{u} l_{n}^{2}$
More than two spans
$\frac{1}{10} w_{u} l_{n}^{2}$
Negative moment at other faces of interior supports
Negative moment at face of all supports for (1) slabs with spans not exceeding 10 ft and (2) beams and girders where ratio of sum of column stiffness to beam stiffness exceeds 8 at each end of the span
Negative moment at interior faces of exterior supports for members built integrally with their supports

Where the support is a spandrel beam or girder $\frac{1}{24} w_{\mu} l_{n}^{2}$
Where the support is a column

$$
\frac{1}{16} w_{u} l_{n}^{2}
$$

Shear in end members at first interior support
$1.15 \frac{w_{u} l_{n}}{2}$
Shear at all other supports

$$
\frac{w_{u} l_{n}}{2}
$$

${ }^{\dagger} w_{u}=$ total factored load per unit length of beam or per unit area of slab.
$l_{n}=$ clear span for positive moment and shear and the average of the two adjacent clear spans for negative moment.
Step 04: Determination of steel area, A_{s}
$A_{s}=\frac{M_{u}}{\emptyset f_{y}\left(d-\frac{a}{2}\right)} \quad$ Where, $\varnothing=0.9$ for flexure design.
Checking the assumed depth, $a=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f^{\prime} \mathrm{cb}}$
According to ACI Code 318-11, section 13.3.1 the minimum reinforcement in each direction shall be as mentioned below:

For 40 grade rebar: $\mathrm{A}_{\mathrm{s} \text { min }}=0.0020 \times b \times h$

60 grade rebar: $\mathrm{A}_{\mathrm{s} \text { min }}=0.0018 \times \mathrm{b} \times \mathrm{h}$
>60 grade rebar: $\mathrm{A}_{\mathrm{s} \text { min }}=\frac{0.0018 \times 60,000}{f_{y}} \times \mathrm{b} \times \mathrm{h}$
Step 05: Determining the spacing of the steel bars
Spacing $=\frac{\text { area of the bar used } * \text { width of the strip }}{\text { required steel area }}$
Note 2.2: The lateral spacing of the bars, except those used to control shrinkage and temperature cracks should not exceed 3 times the thickness h or 18 inch, whichever is less, according to ACI Code 318-11, section 7.6.5. Generally, bar size should be selected so that the actual spacing is not less than about 1.5 times the slab thickness, to avoid excessive cost for bar fabrication \& handling. Also to reduce cost, straight bars are usually used for slab reinforcement.

Note 2.3: Temperature and shrinkage reinforcement: Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement should be provided on a structural slab in which the principal reinforcement extends in one direction only. ACI Code 318-11, section 7.12.2 specifies the minimum ratios of reinforcement area to gross concrete area (i.e. based on the total depth of the slab), but in no case may such reinforcing bars be placed farther apart than 5 times the slab thickness or more than 8 inch. In no case is the reinforcement ratio to be less than 0.0014 .

Figure 2.1: Minimum Thicknesses for Beams and One-Way Slabs. ${ }^{[2.1]}$

2.2 Two way slab

Two way slabs are the slabs that are supported on four sides and the ratio of longer span (B) to shorter span (A) is less than 2. In two way slabs, load will be carried in both the directions. So, main reinforcement is provided in both directions for two way slabs.

For two way slab design, ACI supported two methods. Those are:
(1) Direct design method (DDM) (ACI Code 318-11, section 13.6)

Note 2.3: The direct design method consists of a set of rules for distributing moments to slab and beam sections to satisfy safety requirements and most serviceability requirements simultaneously.
(2) Equivalent frame method (EFM) (ACI Code 318-11, section 13.7)

Note 2.4: The equivalent frame method involves the representation of the threedimensional slab system by a series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames. The negative and positive moments so determined at the critical design sections of the frame are distributed to the slab sections in accordance with 13.6 .4 (column strips), 13.6.5 (beams), and 13.6.6 (middle strips). The equivalent frame method is based on studies reported in Reference 13.18, 13.19, and 13.20 (ACI Code 318-11). Many of the details of the equivalent frame method given in the Commentary in the 1989 Code were removed in the 1995 Code.

There was another design method named "ACI moment coefficient method". The moment coefficient method included for the first time in 1963 ACI Code is applicable to two way slabs supported on four sides of each slab panels by walls, steel beams. However it was discontinued in 1977 and later versions of ACI Code.

But BNBC published in 2013 (draft) included this method and supporting this method named "Alternative design method of two way edge supported slabs".

2.2.1 Determination of thickness of slab

The parameter used to define the relative stiffness of the beam and slab spanning in either direction is α, calculated from $\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cs}} \mathbf{I}_{\mathrm{s}}}$. In which \mathbf{E}_{cb} and \mathbf{E}_{cs} are the modulus of elasticity of the beam and slab concrete (usually the same) and \mathbf{I}_{b} and \mathbf{I}_{s} are the moments of inertia of the effective beam and the slab. Then α_{m} is defined as the average value of α for all beams on the edges of a given panel. According to ACI code 9.5.3.3, for α_{m} equal to or less than 0.2 , the minimum thickness of Table 2.3 shall apply.

Table 2.3: Minimum thickness of slabs without interior beams (ACI 318-11 Table 9.5(c))

	Without Drop Panels			With Drop Panels		
Yield Stress $\mathbf{f}_{\mathbf{y}}$,	Exterior Panels		Interior Panels	Exterior Panels		Interior Panels
psi	Without Edge Beams	With Edge Beams ${ }^{\text {a }}$		Without Edge Beams	With Edge Beams ${ }^{\text {a }}$	
$\begin{aligned} & \hline 40,000 \\ & 60,000 \\ & 75,000 \end{aligned}$	$\begin{aligned} & \hline 1_{\mathrm{n}} / 33 \\ & 1_{\mathrm{n}} / 30 \\ & 1_{\mathrm{n}} / 28 \end{aligned}$	$\begin{aligned} & \hline 1_{n} / 36 \\ & 1_{n} / 33 \\ & 1_{n} / 31 \end{aligned}$	$\begin{aligned} & \hline 1_{\mathrm{n}} / 36 \\ & 1_{\mathrm{n}} / 33 \\ & 1_{\mathrm{n}} / 31 \end{aligned}$	$\begin{aligned} & \hline 1_{n} / 36 \\ & 1_{n} / 33 \\ & 1_{n} / 31 \end{aligned}$	$\begin{aligned} & 1_{\mathrm{n}} / 40 \\ & 1_{\mathrm{n}} / 36 \\ & 1_{\mathrm{n}} / 34 \end{aligned}$	$\begin{aligned} & \hline 1_{\mathrm{n}} / 40 \\ & 1_{\mathrm{n}} / 36 \\ & 1_{\mathrm{n}} / 34 \end{aligned}$

For α_{m} greater than 0.2 but not greater than 2.0, the slab thickness must not be less than

$$
\mathrm{h}=\frac{l_{n}\left[0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{36+5 \beta\left(\alpha_{\mathrm{m}}-0.2\right)} \text { and not less than } 5.0 \text { inch..... (2.1) (ACI Eq. 9-12) }
$$

For α_{m} greater than 2.0, the thickness must not be less than

$$
\mathrm{h}=\frac{l_{n}\left(0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{36+9 \beta} \text { and not less than } 3.5 \text { inch..... (2.2) (ACI Eq. 9-13) }
$$

Where $l_{n}=$ clear span in long direction, in.

$$
\begin{aligned}
& \alpha_{\mathrm{m}}=\text { average value of } \alpha \text { for all beams on edges of a panel. }\left[\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cS}} \mathbf{I}_{\mathrm{s}}}\right] \\
& \beta=\text { ratio of clear span in long direction to clear span in short direction. }
\end{aligned}
$$

At discontinuous edges, an edge beam must be provided with a stiffness ratio α not less than 0.8 ; otherwise the minimum thickness provided by Eq. (2.1) or (2.2) must be increased by at least 10 percent in the panel with the discontinuous edge.

In all cases, slab thickness less than stated minimum may be used if it can be shown by computation that deflections will not exceed the limit values of Table 2.4.

Table 2.4: Maximum allowable computed deflections. (ACI 318-11 Table 9.5(b))

Type of member	Deflection to be considered	Deflection Limitation
Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to the live load L	$\frac{l}{180}$
Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to the live load L	$\frac{l}{360}$
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of the nonstructural elements (sum of the long-time deflection due to all	$\frac{l}{480}$
Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections	sustained loads and the immediate deflection due to any additional live load)	$\frac{l}{240}$

Equations (2.1) and (2.2) can be rested in the general form

$$
\mathrm{h}=\frac{l_{n}\left(0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{F} \ldots \ldots \text { (2.3) }
$$

Where F is the value of the denominator in each case. Figure 2.2 shows the value of F as a function of α_{m}, for comparative purposes, for three panel aspect ratios β :

1. Square panel, with $\beta=1.0$
2. Rectangular panel, with $\beta=1.5$
3. Rectangular panel, with $\beta=2.0$, the upper limit of applicability of Equations (2.1) and (2.2)

Note that, for α_{m} less than 0.2 , column-line beams have little effect, and minimum thickness is given by Table 2.3. For stiff, relatively deep edge beams, with α_{m} of 2 or greater, Eq. (2.2) governs. Equation (2.1) provides a transition for slabs with shallow column-line beams having α_{m} in the range from 0.2 to 2.0.

Figure 2.2: Parameter F governing minimum thickness of two-way slabs; minimum
thickness $\mathrm{h}=\frac{l_{n}\left(0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{F}$

2.2.2 Calculation of alpha

We know $\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cs}} \mathbf{I}_{\mathrm{s}}}$. Here $\mathrm{E}_{\mathrm{cb}}=\mathrm{E}_{\mathrm{cs}}$. Because of beam and slab concrete is same. So we can write $\alpha=\frac{\mathbf{I}_{b}}{\mathbf{I}_{\mathrm{s}}}$.

Calculation of $\mathrm{I}_{\underline{b}}$ and $\mathrm{I}_{\underline{\underline{s}}}:$

Figure 2.3 (a): Section for $\mathrm{I}_{\mathrm{b}}-$ Edge beam.

Figure 2.3 (b): Section for I_{s} - Edge beam.

Figure 2.3 (c): Section for I_{b} - Interior beam.

Figure 2.3 (d): Section for I_{s} - Interior beam.

In which \mathbf{E}_{cb} and \mathbf{E}_{cs} are the modulus of elasticity of the beam and slab concrete (usually the same) and \mathbf{I}_{b} and \mathbf{I}_{s} are the moments of inertia of the effective beam and the slab. Then α_{m} is defined as the average value of α for all beams on the edges of a given panel.

Figure 2.4: Minimum Slab Thickness for Two-Way Slab Systems. ${ }^{[2.2]}$

2.3 Beam

2.3.1 Simplified design of beam

Beam design refers to optimization of beam cross section (i.e. width \& depth) and reinforcement satisfying the design criteria. For beam, design criteria are serviceability and strength. Serviceability condition limits the deflection and strength resist the possible loads. In this study ACI 318 code is used for formulation of background theory.

Load Calculation:

To design a beam maximum bending moments at mid span and supports are required. Moments can be calculated from exact analysis (i.e. moment distribution, slope deflection method etc) using finite element software package. But approximate bending moments can be calculated from ACI 318 section 8.3.3. Moment coefficients are given in the Table 2.2.

Ductile design concept:

Ultimate flexural strength of a beam can be reached when compression concrete collapse. At collapse, strain of tension steel may equal of yield strain or more or less than yield strain depending on the amount of reinforcement (steel ratio) and material properties. A tension failure initiated by yielding of steel is preferred for under-reinforced beam design as it provides gradual warning before collapse. To ensure tension failure ACI 318 section 10.3.5 limits the reinforcement ratio to a certain value based on net tensile strain. The minimum net tensile strain ε_{t} at the nominal member strength of 0.004 for members subjected to axial loads less than $0.10 f_{c}{ }^{\prime} A_{g}$, where A_{g} is the gross section of the cross section. It is generally most economical to design beams such that the strain in the extreme layer of tension reinforcement exceeds 0.005 .

From strain compatibility-

$$
\begin{aligned}
\frac{\varepsilon_{\mathrm{u}}}{\mathrm{c}} & =\frac{\varepsilon_{\mathrm{t}}}{\mathrm{~d}-\mathrm{c}} \\
\Rightarrow \mathrm{c} & =\frac{\varepsilon_{\mathrm{u}}}{\varepsilon_{\mathrm{u}}+\varepsilon_{\mathrm{t}}} \mathrm{~d}
\end{aligned}
$$

From equilibrium-

$$
\begin{aligned}
& C=T \\
\Rightarrow & 0.85 f_{c}^{\prime} \mathrm{ab}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \\
\Rightarrow & 0.85 \mathrm{f}_{\mathrm{c}}^{\prime}\left(\beta_{1} \mathrm{c}\right) \mathrm{b}=\rho b d f_{\mathrm{y}}, \quad \text { Where } \beta_{1}=0.85-0.05 \frac{\mathrm{f}_{\mathrm{c}}^{\prime}-4000}{1000} \\
\Rightarrow & \rho=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\mathrm{c}}{\mathrm{~d}} \\
\Rightarrow & \rho=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\varepsilon_{\mathrm{u}}}{\varepsilon_{\mathrm{u}}+\varepsilon_{\mathrm{t}}} \\
\Rightarrow & \rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\varepsilon_{\mathrm{u}}}{\varepsilon_{\mathrm{u}}+0.004}
\end{aligned}
$$

For $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=3000$ psi and $\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}, \rho_{\max }=0.0155$

For economical and ductile design one can assume ρ corresponding to 0.005 tensile strain at outer layer of tension steel or less. Steel ratios for 0.005 tensile strain for different material properties are given in Table 2.5.

Table 2.5: Steel ratio (ρ) for 0.005 tensile strain at outer tension steel layer.

Concrete Strength (ksi)	Steel Grade (ksi)	
	$\mathbf{6 0}$	
3	0.013547	0.01121
3.5	0.015805	0.01308
4	0.018063	0.01495
5	0.02125	0.01759
6	0.023906	0.01978
7	0.026031	0.02154
8	0.027625	0.02286

Member sizing:

Cross sectional dimension of a beam to resist maximum bending moment can be determined from simple mechanics considering equivalent rectangular stress block according to ACI 318 section 10.2.7.

From equilibrium condition-

$$
\begin{aligned}
& \mathrm{C}=\mathrm{T} \\
\Rightarrow & 0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \\
\Rightarrow & \mathrm{a}=\frac{\mathrm{A}_{\mathrm{f}} \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}} \mathrm{~b}} \\
\Rightarrow & \mathrm{a}=\frac{\rho d \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}}
\end{aligned}
$$

Now Design moment, $M_{u}=\varphi A_{s} f_{y}\left(d-\frac{a}{2}\right)$

So, $M_{u}=\varphi \rho b d f_{y}\left(d-\frac{0.5 \rho d f_{y}}{0.85 f_{c}}\right)$

$$
\begin{aligned}
& \Rightarrow M_{u}=\varphi \rho b d^{2} f_{y}\left(1-\frac{0.5 \rho f_{\mathrm{y}}}{0.85 f_{\mathrm{c}}}\right) \\
& \Rightarrow \frac{\mathrm{M}_{\mathrm{u}}}{\varphi b d^{2}}=\rho \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho f_{\mathrm{y}}}{0.85 f_{\mathrm{c}}}\right) \\
& \Rightarrow \frac{\mathrm{M}_{\mathrm{u}}}{\varphi b d^{2}}=R_{\mathrm{n}}
\end{aligned}
$$

So, $\left(\mathrm{bd}^{2}\right)_{\mathrm{req}}=\frac{\mathrm{M}_{\mathrm{u}}}{\varphi \mathrm{R}_{\mathrm{n}}}$

For, $\mathrm{f}_{\mathrm{c}}=3000 \mathrm{psi}, \mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$ and $\rho=0.0125$
So, $\mathrm{R}_{\mathrm{n}}=0.0125 \times 60000\left(1-\frac{0.5 \times 0.0125 \times 60000}{0.85 \times 3000}\right)=639.71 \mathrm{psi}$

Now, $\left(\mathrm{bd}^{2}\right)_{\text {req }}=\frac{\mathrm{M}_{\mathrm{u}}}{\varphi \mathrm{R}_{\mathrm{n}}}=\frac{\mathrm{Mu} \mathrm{\times 12} \mathrm{\times 1000}}{0.9 \times 639.71}$
$\left(b d^{2}\right)_{\text {req }}=21 \mathrm{M}_{\mathrm{u}}$, Where M_{u} in K-ft, b and d in inch.

This is a simplified equation for member sizing considering a certain steel percentage and material properties. Therefore this approach can be used to derive equations for different material properties and steel percentage. To generalize the equation can be written in form of-

$$
\left(\mathbf{b d}^{2}\right)_{\text {req }}=\left(\mathbf{K}_{1}\right) \mathbf{M}_{u}, \text { Where } M_{u} \text { in K-ft, } b \text { and } d \text { in inch. }
$$

Figure 2.5 (a) and Figure 2.5 (b) shows the design chart of member sizing for different steel percentage and material properties.

Figure 2.5 (a): Design chart for member sizing ($\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$).

Figure 2.5 (b): Design chart for member sizing ($\mathrm{f}_{\mathrm{y}}=72.5 \mathrm{ksi}$).

T beam
L beam

As slab and beams are casted monolithically it is permitted to include the contribution of the slab in beam. Effective width of the flange can be calculated as per ACI 318 section
8.10.2 which is given in the following table.

Table 2.6: Effective flange width.

T-Beam	L-Beam
$b \leq \frac{\text { Span }}{4}$	$b-b_{w} \leq \frac{\text { Span }}{12}$
$b-b_{w} \leq 16 h_{f}$	$b-b_{w} \leq 6 h_{f}$
$b-b_{w} \leq \frac{C / C \text { beam distance }}{2}$	$b-b_{w} \leq \frac{C / C \text { beam distance }}{2}$

Beam section should be designed adequately to limit the deflection that affects the serviceability of structure adversely. According to ACI 318 section 9.5.2.1 minimum thickness of beams are provided in Table 2.7.

Table 2.7: Minimum thickness of nonprestressed beams. (ACI Table 9.5 (a))

	Simply supported	One end continuous	Both ends continuous	Cantilever
Minimum thickness	$\frac{l}{16}$	$\frac{l}{18.5}$	$\frac{l}{21}$	$\frac{l}{8}$

Flexural Reinforcement:

To derive simplified equation of required reinforcement $\left(\mathrm{A}_{s}\right)$, linear relationship between R_{n} and ρ has been assumed though the relationship is not perfectly linear according to the equation, $\mathrm{R}_{\mathrm{n}}=\rho \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}}\right)$. This assumption is valid up to about two-third of the maximum ρ.

Here, $\frac{\mathrm{M}_{\mathrm{u}}}{\varphi b d^{2}}=\rho f_{\mathrm{y}}\left(1-\frac{0.5 \rho f_{\mathrm{y}}}{0.85 f_{c}}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{M}_{\mathrm{u}}}{\varphi \mathrm{~d}}=\rho b d \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}}\right) \\
& \Rightarrow \frac{\mathrm{M}_{\mathrm{u}}}{\varphi d}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}}\right)
\end{aligned}
$$

$$
\Rightarrow A_{s}=\frac{M_{u}}{\varphi d f_{y}\left(1-\frac{0.5 \rho f_{\mathrm{v}}}{0.85 f_{c}}\right)}
$$

For, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=3000 \mathrm{psi}, \mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$ and $\rho=0.0125$

$$
\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{M}_{\mathrm{u}} \times 12 \times 1000}{0.9 \times \mathrm{d} \mathrm{x} 60000\left(1-\frac{0.5 \times 0.0125 \times 60000}{0.85 \times 3000}\right)}
$$

$A_{s}=\frac{M_{u}}{3.85 \mathrm{~d}}$, Where M_{u} in $\mathrm{K}-\mathrm{ft}$, d in inch and A_{s} in sq. inch.

This is a simplified equation for steel area considering a certain steel percentage and material properties. This approach can be used to derive equations for different material properties and steel percentage. To generalize the equation can be written in form of-

$$
\mathbf{A}_{\mathbf{s}}=\frac{\mathbf{M}_{\mathrm{u}}}{\mathbf{d}\left(\mathbf{K}_{2}\right)} \text {, Where } \mathrm{M}_{\mathrm{u}} \text { in } \mathrm{K} \text {-ft, } \mathrm{d} \text { in inch and } \mathrm{A}_{\mathrm{s}} \text { in sq. inch. }
$$

Figure 2.6 (a) and Figure 2.6 (b) shows the design chart of steel area for different steel percentage and material properties.

Figure 2.6 (a): Design chart for steel area ($\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$).

Figure 2.6 (b): Design chart for steel area ($\mathrm{f}_{\mathrm{y}}=72.5 \mathrm{ksi}$).

According to ACI 318 section 10.5 minimum tensile reinforcement should be provided to resist the cracking moment. For any section minimum reinforcement can be calculated by the equation-

$$
\left(A_{s}\right)_{\min }=\frac{3 \sqrt{ } f_{c}^{\prime}}{f_{\mathrm{y}}} b_{\mathrm{w}} d \geq \frac{200}{f_{\mathrm{y}}} b_{\mathrm{w}} d, \quad \text { Where } \mathrm{f}_{\mathrm{c}}^{\prime} \text { and } \mathrm{f}_{\mathrm{y}} \text { are in psi. }
$$

Design steps:

$>$ Calculate the ultimate moment $\left(\mathrm{M}_{\mathrm{u}}\right)$ from Table 2.2 or exact calculation.
$>$ Select preliminary ρ from Table 2.5 to ensure ductile behavior.
$>$ Calculate effective b for T beam from Table 2.6.
$>$ Pick constant K_{1} from Figure 2.5 (a) or 2.5 (b) depending on the material properties.
$>$ Calculate $\left(b d^{2}\right)_{\text {req }}$ using equation $\left(b d^{2}\right)_{\text {req }}=\left(\mathrm{K}_{1}\right) \mathrm{M}_{\mathrm{u}}$.
$>$ Calculate required d.
> Check for minimum d for serviceability (h) from Table 2.7.
$>$ Provide governing $\mathrm{d}\left(\right.$ larger of $\left.\mathrm{d}_{\text {req }}, \mathrm{d}_{\text {min }}\right)$.
$>$ Take governing d .
$>$ Pick constant K_{2} from Figure 2.6 (a) or 2.6 (b) depending on the material properties.
$>$ Calculate A_{s} using equation $A_{s}=\frac{M_{u}}{d\left(K_{2}\right)}$.
$>$ Find $\left(\mathrm{A}_{\mathrm{s}}\right)_{\text {min }}$.
$>$ Take governing $\mathrm{A}_{\mathrm{s}}\left(\right.$ larger of $\left.\left(\mathrm{A}_{\mathrm{s}}\right)_{\text {req }},\left(\mathrm{A}_{\mathrm{s}}\right)_{\text {min }}\right)$.

Economical member sizing notes:

$>$ Beam dimensions should be rounded to whole number.
> Beam width should be multiple of 2 or 3 in inch.
$>$ Change amount of reinforcement instead of cross section for a continuous beam.
> Prefer wide flat beam rather narrow deep beam. Beam width should be equal or greater than column dimensions.

2.3.2 Minimum and maximum number of bars in a single layer for beams of various widths

Tables 2.8 and 2.9 give the minimum and maximum number of bars in a single layer for beams of various widths; selection of bars within these limits will provide automatic code conformance with the cover and spacing requirements.

Table 2.8: Minimum number of bars in a single layer. (ACI 318-11, section 10.6)

Bar Size	Beam Width (in.)												
	12	14	16	18	20	22	24	26	28	30	36	42	48
No. 4	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 5	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 6	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 7	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 8	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 9	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 10	2	2	3	3	3	3	3	4	4	4	5	5	6
No. 11	2	2	3	3	3	3	3	4	4	4	5	5	6

The values in Table 2.8 are based on a cover of 2 in . to the main flexural reinforcement (i.e., 1.5 in. clear cover to the stirrups plus the diameter of a No. 4 stirrup). In general, the following equations can be used to determine the minimum number of bars n in a single layer for any situation.
$\mathrm{n}_{\text {min }}=\frac{\mathrm{b}_{\mathrm{w}}-2\left(\mathrm{C}_{\mathrm{c}}+0.5 \mathrm{~d}_{\mathrm{b}}\right)}{\mathrm{s}}+1$

Where, $\mathrm{s}=15 \times\left(40,000 / \mathrm{f}_{\mathrm{s}}\right)-2.5 \times \mathrm{Cc} \leq 12 \times\left(4,000 / \mathrm{f}_{\mathrm{s}}\right)$ and $\mathrm{f}_{\mathrm{s}}=2 / 3 \times \mathrm{f}_{\mathrm{y}}$

Table 2.9: Maximum number of bars in a single layer.

Bar	Beam Width (in)												
Size	12	14	16	18	20	22	24	26	28	30	36	42	48
No. 4	5	6	8	9	10	12	13	14	16	17	21	25	29
No. 5	5	6	7	8	10	11	12	13	15	16	19	23	27
No. 6	4	6	7	8	9	10	11	12	14	15	18	22	25
No. 7	4	5	6	7	8	9	10	11	12	13	17	20	23
No. 8	4	5	6	7	8	9	10	11	12	13	16	19	22
No. 9	3	4	5	6	7	8	8	9	10	11	14	17	19
No. 10	3	4	4	5	6	7	8	8	9	10	12	15	17
No. 11	3	3	4	5	5	6	7	8	8	9	11	13	15

Figure 2.7: Cover and spacing requirements for Tables 2.8 and 2.9.
Where, $b_{w}=$ beam width, in.
$\mathrm{c}_{\mathrm{c}}=$ clear cover to tension reinforcement, in.
$c_{s}=$ clear cover to stirrups, in.
$d_{b}=$ diameter of main flexural bar, in.
$d_{\text {s }}=$ diameter of stirrups.

The values obtained from the above equations should be rounded up to the next whole number. The values in Table 2.9 can be determined from the following equation:
$\mathrm{n}_{\max }=1+\frac{\mathrm{b}_{\mathrm{w}}-2\left(\mathrm{C}_{\mathrm{s}}+\mathrm{d}_{\mathrm{s}}+\mathrm{r}\right)}{(\text { minimum clear space })+\mathrm{d}_{\mathrm{b}}} \quad$ Where, $\mathrm{r}=\left\{\begin{array}{l}\frac{3}{4} \text { in. for No. } 3 \text { stirrups } \\ 1 \text { in. for No. } 4 \text { stirrups }\end{array}\right.$

The minimum clear space between bars is defined in Figure 2.7. The above equation can be used to determine the maximum number of bars in any general case; computed values should be rounded down to the next whole number.

2.3.3 Selection of stirrups for economy

Selection of stirrup size and spacing for overall cost savings requires consideration of both design time and fabrication and placing costs.

Minimum cost solutions for simple placing should be limited to three spacing: the first stirrup located at two inch from the face of the support (as a minimum clearance), an intermediate spacing, and finally, a maximum spacing at the code limit of $\mathrm{d} / 2$. Larger size stirrups at wider spacings are more cost-effective (e.g., using No. 4 and No. 3 at double spacing and No. 5 and No. 4 at 1.5 spacing). If it is possible to use them within the spacing limitations of $\mathrm{d} / 2$ and $\mathrm{d} / 4$.

In order to adequately develop the stirrups, the following requirements must all be satisfied (ACI Code 318-11, section 12.13):

1) Stirrups shall be carried as close to the compression and tension surfaces of the member as cover requirements permit.
2) For No. 5 stirrups and smaller, a standard stirrup hook (as defined in ACI Code 318-11, section 7.1.3) shall be provided around longitudinal reinforcement.
3) Each bend in the continuous portion of the stirrup must enclose a longitudinal bar. To allow for bend radii at corners of U stirrups, the minimum beam widths given in Table 2.10 should be provided.

Table 2.10: Minimum beam widths for stirrups.

Stirrup size	Minimum beam width $\left(\mathbf{b}_{\mathbf{w}}\right)$
No.3	10 in
No.4	12 in
No.5	14 in

2.3.4 Simplified design of beam stirrup

The design values in Table 2.11 are valid for $\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}}=4000 \mathrm{psi}$.

Table 2.11: Concrete shear strength design values for $\mathrm{f}_{\mathrm{c}}=4000 \mathrm{psi}$.

Equation	Design Value	ACI 318-11 Section
$\varphi V_{n}=\varphi 2 \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	$0.095 \mathrm{~b}_{\mathrm{w}} \mathrm{d}$	ACI 11.2.1.1
$0.5 \varphi \mathrm{~V}_{\mathrm{n}}=\varphi \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	$0.048 \mathrm{~b}_{\mathrm{w}} \mathrm{d}$	ACI 11.4.6.1
Maximum $\varphi V_{c}+\varphi V_{\mathrm{n}}=\varphi 10 \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	$0.48 \mathrm{~b}_{\mathrm{w}} \mathrm{d}$	ACI 11.4.7.9
Joists defined by ACI 8.13 $\varphi V_{\mathrm{c}}=\varphi 2.2 \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	$0.104 \mathrm{~b}_{\mathrm{w}} \mathrm{d}$	ACI 8.13.8

b_{w} and d are in inches and the resulting shear in kips.
The selection and spacing of stirrups can be simplified if the spacing is expressed as a function of the effective depth d . According to ACI 11.4.5.1 and ACI 11.4.5.3, the practical limits of stirrups spacing vary from $\mathrm{s}=\mathrm{d} / 2$ to $\mathrm{s}=\mathrm{d} / 4$ is not economical. With one intermediate spacing and $\mathrm{d} / 3$, the calculation and selection of stirrup spacing is greatly simplified. Using the three standard stirrup spacings noted above ($\mathrm{d} / 2, \mathrm{~d} / 3, \mathrm{~d} / 4$), a specific value of φV_{s} can be derived for each stirrup size and spacing as follows:

For vertical stirrups: $\varphi \mathrm{V}_{\mathrm{s}}=\frac{\varphi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{d}}{\mathrm{s}} \ldots \ldots$.(ACI equation 11.15)

By substituting d / n for s (where $\mathrm{n}=2,3,4$), the above equation can be written as:

$$
\varphi \mathrm{V}_{\mathrm{s}}=\varphi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{n}
$$

Thus, for No 3 U-stirrups @ $s=d / 2$ with $f_{y}=60000$ psi and $\varphi=0.75$
$\varphi \mathrm{V}_{\mathrm{s}}=0.75(0.22) \times 60 \times 2=19.8 \mathrm{kips}$, say 20 kips

The values $\varphi \mathrm{V}_{\mathrm{s}}$ given in Table 2.12 may be used to select shear reinforcement with Grade 60 rebars.

Table 2.12: Values of $\varphi V_{s}\left(f_{y}=60 \mathrm{ksi}\right)$.

s	\#3 U-stirrups	\#4 U-stirrups	\#5 U-stirrups
d/2	20 kips	36 kips	56 kips
d/3	30 kips	54 kips	84 kips
d/4	40 kips	72 kips	112 kips

*Valid for stirrups with 2 legs (double the tabulated values for 4 legs, etc).

It should be noted that the values of φV_{s} are not dependent on the member size nor on the concrete strength.

In the above equation b_{w} and d are in inches and the resulting shear in kips.

2.4 Development length

2.4.1 Cranked bar for slab

Figure 2.8: Rebar bend points in approximately equal spans with uniformly distributed loads.

2.4.2 Bar cutoff for beam

Figure 2.9: Rebar cutoff points in approximately equal spans with uniformly distributed loads.

2.5 Least squares (\mathbf{R}^{2})

The method of least squares is a standard approach in regression analysis to the approximate solution of over determined systems, i.e., sets of equations in which there are more equations than unknowns. "Least squares" means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation.

The most important application is in data fitting. The best fit in the least-squares sense minimizes the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided by a model. When the problem has substantial uncertainties in the independent variable (the x variable), then simple regression and least squares methods have problems; in such cases, the methodology required for fitting errors-in-variables models may be considered instead of that for least squares.

Least squares problems fall into two categories: linear or ordinary least squares and nonlinear least squares, depending on whether or not the residuals are linear in all unknowns.

The linear least-squares problem occurs in statistical regression analysis; it has a closedform solution. The non-linear problem is usually solved by iterative refinement; at each iteration the system is approximated by a linear one, and thus the core calculation is similar in both cases.

Polynomial least squares describes the variance in a prediction of the dependent variable as a function of the independent variable and the deviations from the fitted curve.

When the observations come from an exponential family and mild conditions are satisfied, least-squares estimates and maximum-likelihood estimates are identical. The method of least squares can also be derived as a method of moments estimator.

2.6 Comparison table

2.6.1 Comparison table of design live loads for various occupancies

suggested by different codes

A comparison table which contains design live loads for various occupancies suggested by different codes (i.e. ASCE, BNBC, IBC, UBC, Euro/ British Code) is given below:

Table 2.13: Table of design live loads for various occupancies suggested by different codes.

Occupancy or use	ASCE (2007) (KN/m²)		$\begin{gathered} \text { Euro Code } \\ (1991) \\ \left(\mathrm{KN} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \text { IBC } \\ (2012) \\ \left(\mathbf{K N} / \mathbf{m}^{2}\right) \end{gathered}$	$\begin{gathered} \hline \text { UBC } \\ (1997) \\ \left(\mathrm{KN} / \mathrm{m}^{2}\right) \end{gathered}$
Residential - Uninhabitab le attics without storages - Uninhabitab le attics with storages - Habitable attics and sleeping areas - All other areas except balconies and corridors	0.48 0.96 1.44 1.92	2.0 4.0	$\begin{aligned} & 1.5 \text { to } 2.0 \\ & 1.5 \text { to } 2.0 \end{aligned}$	0.48 0.96 1.92 1.92	1.44 1.92
Balconies (exterior)	4.79	4.0	2.5 to 4	4.0	2.87
Stairs	2.87 4.79 \quad to	2.0 to 3.0	2.0 to 4.0	$\begin{aligned} & 1.92 \text { (one } \\ & \text { or two } \\ & \text { family) } \\ & 4.79 \text { (for } \\ & \text { all other) } \end{aligned}$	

Schools - Classrooms	1.92	3.0	2.0 to 3.0	1.92	1.92
Offices	2.4	2.5	2.0 to 3.0	2.4	2.4
Assembly Areas and theatres - With fixed seats - Without fixed seats	$\begin{aligned} & 2.87 \\ & 4.79 \end{aligned}$	$\begin{aligned} & 3.0 \text { to } 4.0 \\ & 2.0 \text { to } 3.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 2.87 \\ 4.79 \end{array}$	2.4 4.79
Hospitals - Operating rooms - Laboratories - wards	$\begin{aligned} & 2.87 \\ & 2.87 \\ & 1.92 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \text { to } 5.0 \\ & 3.0 \text { to } 5.0 \\ & 3.0 \text { to } 5.0 \end{aligned}$	$\begin{aligned} & 2.87 \\ & 2.87 \\ & 1.92 \end{aligned}$	$\begin{aligned} & 2.87 \\ & 2.87 \\ & 1.92 \end{aligned}$
Stores	4.79	4.0	4.0 to 5.0	4.79	4.79
Storages - light - heavy	$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.0 \text { to } 5.0 \\ & 4.0 \text { to } 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$
Manufacturing - light - heavy	$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 11.97 \end{aligned}$

Chapter 03 METHODOLOGY AND EXPERIMENTAL WORK

3.1 Two way slab

3.1.1 Simplified method of determination of thickness

Step 01: At first, we collect some full structural design and plan of building and then select 10 plans of floor slab among them for analysis. Those plans are given in the Appendix (Figure A.01- A.10).

Step 02: From each of the floor slab plan, we selected the largest slab panel for calculation of alpha.

Step 03: After that we take the dimensions of selected panel from each floor slab plan.

	Clear Span	
Plan No.	Shorter length (in)	Longer Length (in)
1	232	251
2	185	324
3	230	274
4	152	191
5	232	251
6	151	206
7	192	271
8	118	204
9	118	216.5
10	185.5	236

Step 04: Then we calculate alpha (α) for each selected slab panel of the floor slab plan according to Article 2.2.2.

Calculation of alpha for Plan 01 (Appendix Figure A.01):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
4.03	Edge	2.57	Interior	4.33	Edge	3.61	Interior	3.64

Calculation of alpha for Plan 02 (Appendix Figure A.02):

$\boldsymbol{\alpha}_{\mathbf{1}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{2}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
4.53	Interior	6.47	Edge	6.84	Interior	10.86	Edge	7.18

Calculation of alpha for Plan 03 (Appendix Figure A.03):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
3.28	Interior	4.58	Edge	5.39	Edge	5.39	Edge	4.66

Calculation of alpha for Plan 04 (Appendix Figure A.04):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
3.72	Interior	5.17	Edge	6.34	Edge	3.84	Interior	4.77

Calculation of alpha for Plan 05 (Appendix Figure A.05):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
4.03	Edge	0.24	Edge	4.33	Edge	4.33	Edge	3.23

Calculation of alpha for Plan 06 (Appendix Figure A.06):

$\boldsymbol{\alpha}_{\mathbf{1}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{2}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
4.83	Edge	3.5	Interior	6.38	Edge	4.17	Interior	4.72

Calculation of alpha for Plan 07 (Appendix Figure A.07):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
3.75	Edge	2.87	Interior	3.7	Interior	5.15	Edge	3.87

Calculation of alpha for Plan 08 (Appendix Figure A.08):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
5.26	Interior	4.4	Interior	4.87	Edge	4.87	Edge	4.85

Calculation of alpha for Plan 09 (Appendix Figure A.09):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{2}}$	Beam Type	$\boldsymbol{\alpha}_{\mathbf{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
4.87	Interior	4.28	Interior	4.61	Edge	4.61	Edge	4.59

Calculation of alpha for Plan 10 (Appendix Figure A.10):

$\boldsymbol{\alpha}_{\boldsymbol{1}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{2}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{3}}$	Beam Type	$\boldsymbol{\alpha}_{\boldsymbol{4}}$	Beam Type	Avg. $\boldsymbol{\alpha}$
7.42	Edge	5.46	Interior	7	Interior	9.24	Edge	7.28

Step 05: Determine minimum thickness of floor slab for each plan corresponding to alpha according to Article 2.2.1.

We can see that, for all floor slabs of the plan values of alpha, $\alpha_{\text {avg }}>2$. So according to Article 2.2.1 we use ACI Eq. 9-13 for determining minimum slab thickness.

For α_{m} greater than 2.0, the thickness must not be less than

$$
\mathrm{h}=\frac{l_{n}\left(0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{36+9 \beta} \text { and not less than } 3.5 \text { inch..... (2.2) (ACI Eq. 9-13) }
$$

Where $l_{n}=$ clear span in long direction, in.

$$
\alpha_{\mathrm{m}}=\text { average value of } \alpha \text { for all beams on edges of a panel. }\left[\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cS}} \mathbf{I}_{\mathrm{s}}}\right]
$$

$\beta=$ ratio of clear span in long direction to clear span in short direction. and $f_{y}=60,000$ psi.

	Clear Span			
Plan No.	Shorter length (in)	Longer Length (in)	$\boldsymbol{\beta}$	Thickness corresponding $\boldsymbol{\alpha}$ (in)
1	232	251	1.08	6.04
2	185	324	1.75	6.89
3	230	274	1.91	6.45
4	152	191	1.26	4.44
5	232	251	1.08	6.04
6	151	206	1.36	4.69
7	192	271	1.41	6.12
8	118	204	1.73	4.35
9	118	216.5	1.83	4.54
10	185.5	236	1.27	5.47

Step 06: Then we calculate perimeter (Inner, C/C, and outer) of the slab panel for all floor slab plan.

Plan no.	Inner perimeter (in)	C/C perimeter (in)	Outer perimeter (in)
01	966	1006	1046
02	1018	1058	1098
03	1008	1048	1088
04	686	726	766
05	966	1006	1046
06	714	754	794
07	926	966	1006
08	644	684	724
09	669	709	749
10	843	883	923

Step 07: Now, calculate thicknesses of slabs for floor slab plans from: $\frac{\mathrm{P}_{\text {Inner }}}{145}, \frac{\mathrm{Pc} / \mathrm{c}}{145}$, $\frac{\mathrm{P}_{\text {Outer }}}{145}, \frac{\mathrm{P}}{150}, \frac{\mathrm{P}}{160}$, and $\frac{\mathrm{P}}{180}$ and compare them with the thicknesses comes from step 05.

Plan No.	Thickness corresponding $\boldsymbol{\alpha},($ (in)	$\mathbf{P}_{\text {Inner }}$ $\mathbf{1 4 5}$ (in)	$\mathbf{P c / c}$ $\mathbf{1 4 5}$ (in)	$\frac{\mathbf{P}_{\text {Outer }}}{\mathbf{1 4 5}}$ (in)	\mathbf{P} (in)	\mathbf{P} (in)	\mathbf{P} (in)
01	6.04	6.66	6.94	7.21	6.97	6.54	5.81
02	6.89	7.02	7.3	7.57	7.32	6.86	6.1
03	6.45	6.95	7.23	7.5	7.25	6.8	6.04
04	4.44	4.73	5.01	5.28	5.11	4.79	4.26
05	6.04	6.66	6.94	7.21	6.97	6.54	5.81
06	4.69	4.92	5.2	5.48	5.29	4.96	4.41

Plan No.	Thickness corresponding $\boldsymbol{\alpha},(\mathbf{i n})$	$\mathbf{P}_{\text {Inner }}$ (in5	$\frac{\mathbf{P c} / \mathbf{c}}{\mathbf{1 4 5}}$ (in)	$\frac{\mathbf{P}_{\text {Outer }}}{\mathbf{1 4 5}}$ (in)	\mathbf{P} (in)	$\frac{\mathbf{P}}{\mathbf{1 6 0}}$ (in)	$\frac{\mathbf{P}}{\mathbf{1 8 0}}$ (in)
07	6.12	6.39	6.66	6.94	6.71	6.29	5.59
08	4.35	4.44	4.72	4.99	4.83	4.53	4.02
09	4.54	4.61	4.89	5.17	4.99	4.68	4.16
10	5.47	5.81	6.09	6.37	6.15	5.77	5.13

Step 08: After that, we developed comparison graphs of: $\frac{\mathrm{P}_{\text {Inner }}}{145}$ (in) vs Thickness corresponding α, (in); $\frac{\mathrm{Pc} / \mathrm{c}}{145}$ (in) vs Thickness corresponding α, (in); $\frac{\mathrm{P}_{\text {Outer }}}{145}$ (in) vs Thickness corresponding α, (in); $\frac{\mathrm{P}}{150}$ (in) vs Thickness corresponding α, (in); $\frac{\mathrm{P}}{160}$ (in) vs Thickness corresponding α, (in); and $\frac{\mathrm{P}}{180}$ (in) vs Thickness corresponding α, (in). For those 10 plans of floor slab.

Finally we found the "Least Squares $\left(\mathrm{R}^{2}\right)$ " value for each trend line of each graphs of calculated 10 plans of floor slab.

From the R^{2} values of graphs, we can select the simplified thumb rule for determining thickness of slab.

Figure 3.1: $\frac{\mathrm{P}_{\text {Inner }}}{145}$ (in) vs Thickness corresponding α, (in) diagram.

Figure 3.2: $\frac{\mathrm{Pc} / \mathrm{c}}{145}$ (in) vs Thickness corresponding α, (in) diagram.

Figure 3.3: $\frac{\mathrm{P}_{\text {outer }}}{145}$ (in) vs Thickness corresponding α, (in) diagram.

Figure 3.4: $\frac{\mathrm{P}}{150}$ (in) vs Thickness corresponding α, (in) diagram.

Figure 3.5: $\frac{\mathrm{P}}{160}$ (in) vs Thickness corresponding α, (in) diagram.

Figure 3.6: $\frac{\mathrm{P}}{180}$ (in) vs Thickness corresponding α, (in) diagram.

Example \#01:

Determination of minimum thickness of a slab

A two-way reinforced concrete building floor system is composed of slab panels measuring 20x 25 ft in plan, supported by shallow column-line beams cast monolithically with the slab as shown in Figure 3.7. Using concrete with $\mathrm{f}^{\prime}{ }^{c}=4000$ psi and steel with $\mathrm{f}_{\mathrm{y}}=$ $60,000 \mathrm{psi}$, determine the minimum thickness of the slab.

Figure 3.7: Two-way slab floor with beams on column lines:
(a) Partial floor plan;
(b) Section $X-X$ (section $Y-Y$ similar).

Solution: At first select the largest slab panel from floor slab plan. In this example, dimension of the slab panel is $20^{\prime} \times 25^{\prime}$. Primarily, now we determining thickness of slab using the following formula: thickness $(\mathrm{in})=\frac{\text { Perimeter }}{145}$
Here, Perimeter $=2 \times(20+25) \times 12=1080$ in

So thickness $=\frac{1080}{145}=7.45 \mathrm{in} \approx 8$ in (say)
Moment of Inertia for beam B4 (Exterior beam):

$\overline{\mathrm{Y}}_{4}=\frac{(20 \times 14 \times 10)+(12 \times 8 \times 4)}{(20 \times 14)+(12 \times 8)}=8.47 \mathrm{in}$
$\mathrm{I}_{\mathrm{b} 4}=\frac{14 \times 20^{3}}{12}+(20 \times 14) \times(10-8.47)^{2}+\frac{12 \times 8^{3}}{12}+(12 \times 8) \times(8.47-4)^{2}=12418.95$ in ${ }^{4}$

Moment of Inertia for Beam B1, B2, and B3 (Interior beam): In this case, those three beam's dimension is same and those are interior beam. So here moment of inertia for beam $B 1, B 2, B 3$ is same.

$\overline{\mathrm{Y}}_{1}=\overline{\mathrm{Y}}_{2}=\overline{\mathrm{Y}}_{3}=\frac{(20 \times 14 \times 10)+(12 \times 8 \times 4) \times 2}{(20 \times 14)+(12 \times 8) \times 2}=7.56$ in
$\mathrm{I}_{\mathrm{b} 1}=\mathrm{I}_{\mathrm{b} 2}=\mathrm{I}_{\mathrm{b} 3}=\frac{14 \times 20^{3}}{12}+(20 \times 14) \times(10-7.56)^{2}+\left(\frac{12 \times 8^{3}}{12}+(12 \times 8) \times(7.56-4)^{2}\right) \times$ $2=14457.67 \mathrm{in}^{4}$

Calculation of I_{54} :

$\mathrm{I}_{54}=\frac{(150+7) \times 8^{3}}{12}=6698.67 \mathrm{in}^{4}$

Calculation of $\mathrm{I}_{\mathrm{s} 3}$:

$\mathrm{I}_{\mathrm{s} 3}=\frac{(150+150) \times 8^{3}}{12}=12800 \mathrm{in}^{4}$
Calculation of $I_{s 1}$ and $I_{s 2}:$ Value of $I_{s 1}$ and I_{52} is same. Because B1 and B2 both are interior beam and for both cases, clear span on both side transverse to the beam B1 and B2 are same.

$\mathrm{I}_{\mathrm{s} 1}=\mathrm{I}_{\mathrm{s} 2}=\frac{(120+120) \times 8^{3}}{12}=10240 \mathrm{in}^{4}$
Calculation of α : We know $\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cs}} \mathbf{I}_{\mathrm{s}}}$. Here $\mathrm{E}_{\mathrm{cb}}=\mathrm{E}_{\mathrm{cs}}$. Because of beam and slab concrete is same. So we can write $\alpha=\frac{I_{b}}{I_{\mathrm{s}}}$.
For this example $\alpha_{1}=\frac{\mathbf{I}_{\mathrm{b} 1}}{\mathbf{I}_{\mathrm{s} 1}}=\frac{14457.67}{10240}=1.41$
$\alpha_{2}=\frac{\mathbf{I}_{\mathrm{b} 2}}{\mathbf{I}_{\mathrm{s} 2}}=\frac{14457.67}{10240}=1.41$
$\alpha_{3}=\frac{\mathbf{I}_{\mathrm{b} 3}}{\mathbf{I}_{\mathrm{s} 3}}=\frac{14457.67}{12800}=1.13$
$\alpha_{4}=\frac{\mathbf{I}_{\mathrm{b} 4}}{\mathbf{I}_{\mathrm{s} 4}}=\frac{12418.95}{6698.67}=1.85$
Average value of $\alpha, \alpha_{\text {avg }}=\frac{1.41+1.41+1.13+1.85}{4}=1.45$
The ratio of long to short clear spans is $\beta=286 / 226=1.27$. Then the minimum thickness is not to be less than that given by Eq. (2.1) (Article 2.2.1):

$$
\mathrm{h}=\frac{286\left(0.8+\left(\frac{60000}{200,000}\right)\right)}{36+5 \times 1.27(1.45-0.2)}=7.16 \mathrm{in}
$$

3.1.2 Design Procedure of Two-way Slabs using ACI Moment Coefficients:

The method makes use of tables of moment coefficient for a variety of conditions. These coefficients are based on elastic analysis but also account for inelastic redistribution. This method was recommended in 1963 ACI Code for the special case of two-way slabs supported on four sides by relatively deep, stiff, edge beams.

Step 01: Determine minimum thickness of the slab.
Determine the thickness of the slab, h using Article 2.2.1.

Step 02: Calculation of factored load.
$\mathrm{W}_{\mathrm{DL}}=1.2 * \mathrm{DL}$ and $\mathrm{W}_{\mathrm{LL}}=1.6 * \mathrm{LL}$; $\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{DL}}+\mathrm{W}_{\mathrm{LL}}$

Where DL= Total dead load (i.e.: Slab self weight, Floor finish, Partition wall, Plaster etc.)

LL= Live load.

Step 03: Determination of moment coefficients.

$$
\mathrm{m}=\frac{\mathrm{A}}{\mathrm{~B}}
$$

Where $A=$ Shorter length of the slab.
$B=$ Longer length of the slab.
Case type is identified from end condition. Using the value of ' m ' corresponding moment coefficients are obtained for respective 'case type' from Table 3.1, 3.2 and 3.3. The coefficients are:

- $\mathrm{C}_{\mathrm{A} \text { neg }}$ and $\mathrm{C}_{\mathrm{B} \text { neg }}$
- $\mathrm{C}_{\mathrm{A} \text { dl pos }}$ and $\mathrm{C}_{\mathrm{B} \text { DL pos }}$
- $\mathrm{C}_{\mathrm{A} \text { Ll pos }}$ and $\mathrm{C}_{\mathrm{B} \text { LL pos }}$

Table 3.1: Table for $\mathrm{C}_{\mathrm{A} \text { neg }}$ and $\mathrm{C}_{\mathrm{B} \text { neg. }}{ }^{[3.1]}$

$\begin{array}{r} \text { Ratio } \\ m=\frac{A}{B} \end{array}$	Case 1 ${ }^{\circ}$	Case 2 \square \square	Case 3 \square	Case 4 \square	Case 5 n	Case 6	Case 7 \square \square	Case 8 \square	Case 9 \square
		0.045		0.050	0.075	0.071		0.033	0.061
$C_{n \text { neg }}$		0.045	0.076	0.050			0.071	0.061	0.033
$C_{\text {A neg }}$		0.050		0.055	0.079	0.075		0.038	0.065
$C^{\text {s neg }}$		0.041	0.072	0.045			0.067	0.056	0.029
${ }^{\text {Caner }}$		0.055		0.060	0.080	0.079		0.043	0.068
$\mathrm{C}_{\text {B ner }}$		0.037	0.070	0.040			0.062	0.052	0.025
${ }_{0.85} C_{\text {A nex }}$		0.060		0.066	0.082	0.083		0.049	0.072
$C_{n \text { nes }}$		0.031	0.065	0.034			0.057	0.046	0.021
${ }_{81} C_{\text {nek }}$		0.065		0.071	0.083	0.086		0.055	$0.07 b$
$C_{\text {m nek }}$		0.027	0.061	0.029			0.051	0.041	0.017
$C_{\text {A nex }}$		0.069		0.076	0.085	0.088		0.061	0.078
C^{8} neg		0.022	0.056	0.024			0.044	0.036	0.014
${ }^{\text {Can }}$ er		0.074		0.081	0.086	0.091		0.068	0.081
C_{s} neg		0.017	0.050	0.019			0.038	0.029	0.011
$C_{\text {A nex }}$		0.077		0.085	0.087	0.093		0.074	0.083
$C_{s m \text { neg }}$		0.014	0.043	0.015			0.031	0.024	0.008
${ }^{\text {C }}$ C mer		0.081		0.089	0.088	0.095		0.080	0.085
${ }^{0.60} C_{n \text { ues }}$		0.010	0.035	0.011			0.024	0.018	0.006
${ }_{0.55} C_{\text {A nek }}$		0.084		0.092	0.089	0.096		0.085	0.086
$C_{B \text { nez }}$		0.007	0.028	0.008			0.019	0.014	0.005
0.50		0.086		0.094	0.090	0.097		0.089	0.088
${ }^{0.50} C_{n \mathrm{nek}}$		0.006	0.022	0.006			0.014	0.010	0.003

[^0]Table 3.2: Table for $\mathrm{C}_{\mathrm{ADL} \text { pos }}$ and $\mathrm{C}_{\mathrm{B} \text { DL pos. }}{ }^{[3.2]}$

* A cross-hatched edge indicates that the slab continues across or is fixed at the support; an unmarked edge indicates a support at which torsional resistance is negligible.

Table 3.3: Table for $\mathrm{C}_{\mathrm{ALL} \text { pos }}$ and $\mathrm{C}_{\mathrm{BLL} \text { pos }}{ }^{[3.3]}$

$\begin{array}{r} \text { Ratio } \\ m=\frac{A}{B} \end{array}$	Case 1 \square	Case 2 \square	Case 3 \square	Case 4	Case 5 nemer	Case 6	Case 7 \square	Case 8 \square \square	Case 9 \qquad
$C_{\text {A LL }}$	0.036	0.027	0.027	0.032	0.032	0.035	0.032	0.028	0.030
${ }^{1.00} C_{B}$	0.036	0.027	0.032	0.032	0.027	0.032	0.035	0.030	0.028
C_{\wedge}	0.040	0.030	0.031	0.035	0.034	0.038	0.036	0.031	0.032
C_{B}	0.033	0.025	0.029	0.029	0.024	0.029	0.032	0.027	0.025
CA	0.045	0.034	0.035	0.039	0.037	0.042	0.040	0.035	0.036
${ }^{0.90} \mathrm{C}_{\mathrm{n}}$	0.029	0.022	0.027	0.026	0.021	0.025	0.029	0.024	0.022
Cald	0.050	0.037	0.040	0.043	0.041	0.046	0.045	0.040	0.039
${ }^{0.85} \mathrm{Cm}_{1}$	0.026	0.019	0.024	0.023	0.019	0.022	0.026	0.022	0.020
C_{\wedge}	0.056	0.041	0.045	0.048	. 044	0.051	0.051	0.044	0.042
${ }^{0.80} \mathrm{C}_{\text {elL }}$	0.023	0.017	0.022	0.020	0.016	0.019	0.023	0.019	0.017
C	0.061	0.	0.051	0.05	0.047	0.05	. 05	0.049	0.046
$\mathrm{C}_{\text {f LL }}$	0.019	0.014	0.019	0.016	0.013	0.016	0.020	0.016	0.013
C	0.068	0.	0.0	0.0	0.	0.06	0.063	0.05	. 050
${ }^{\text {a }}$ LL	0.016	0.012	0.016	0.014	0.011	0.013	0.017	0.014	0.011
	0.074	0.	0.0	0.	0.055	0.06	0.070	0.059	0.05
${ }^{0.65}{ }_{\text {g LL }}$	0.013	0.010	0.014	0.011	0.009	0.010	0.014	0.011	0.009
C	0.081	0.058	0.07	0.	0.059	0.068	0.077	0.065	0.05
$C_{\text {b LL }}$	0.010	0.007	0.011	0.009	0.007	0.008	0.011	0.009	0.007
$\mathrm{Ca}_{\text {a li }}$	0.088	0.062	0.080	0.072	0.063	0.073	0.085	0.070	0.063
$\mathrm{C}_{\text {a }}$ in.	0.008	0.006	0.009	0.007	0.005	0.006	0.009	0.007	0.006
$C_{\text {a ll }}$	0.095	0.066	0.088	0.077	0.067	0.078	0.092	0.076	0.067
$\mathrm{C}_{8 \mathrm{LLL}}$	0.006	0.004	0.007	0.005	0.004	0.005	0.007	0.005	0.004

[^1]Step 04: Determine controlling moments $+\mathrm{M}_{\mathrm{A}},-\mathrm{M}_{\mathrm{A}},+\mathrm{M}_{\mathrm{B}},-\mathrm{M}_{\mathrm{B}}$.
$+\mathrm{M}_{\mathrm{A}}=\mathrm{C}_{\mathrm{ADL}} \times \mathrm{W}_{\mathrm{DL}} \times \mathrm{A}^{2}+\mathrm{C}_{\mathrm{ALL}} \times \mathrm{W}_{\mathrm{LL}} \times \mathrm{A}^{2}$;
$-\mathrm{M}_{\mathrm{A}}=\mathrm{C}_{\mathrm{Aneg}} \times \mathrm{W}_{\mathrm{u}} \times \mathrm{A}^{2}$;
$+\mathrm{M}_{\mathrm{B}}=\mathrm{C}_{\mathrm{B} D L} \times \mathrm{W}_{\mathrm{DL}} \times \mathrm{B}^{2}+\mathrm{C}_{\mathrm{B}}{ }_{L L} \times \mathrm{W}_{\mathrm{LL}} \times \mathrm{B}^{2} ;$
$-M_{B}=C_{B n e g} \times W_{u} \times B^{2}$.

Step 05: Determine required steel area.
$A_{s}=\frac{M_{u}}{\emptyset * f_{y} *\left(d-\frac{a}{2}\right)} ; \quad$ Here $\emptyset=0.9$
And $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} * \mathrm{f}_{\mathrm{y}}}{0.85 * \mathrm{f}^{\prime} \mathrm{c} * \mathrm{~b}}$
According to ACI Code 318-11, section 13.3.1 the minimum reinforcement in each direction shall be as mentioned below:

For 40 grade rebar: $\mathrm{A}_{\mathrm{s} \min }=0.0020 \times b \times h$
60 grade rebar: $\mathrm{A}_{\mathrm{s} \min }=0.0018 \times \mathrm{b} \times \mathrm{h}$
>60 grade rebar: $\mathrm{A}_{\mathrm{s} \text { min }}=\frac{0.0018 \times 60,000}{f_{y}} \times \mathrm{b} \times \mathrm{h}$

Step 06: Determine c/c spacing of used bars.

Using \# 3 or \# 4 bar required spacing is determined. Maximum spacing < 2 h (ACI Code 318-11, section 13.3.2).

Example \#02:

Design of two-way edge supported slab by using moment coefficients

Beam-column supported floor slab of a $93^{\prime}-6^{\prime \prime} \times 75^{\prime}-6^{\prime \prime}$ (center to center distance of extreme columns) cyclone shelter is to carry service live load of 100 psf in addition to its own weight, $1 / 2^{\prime \prime}$ thick plaster and $3 / 2^{\prime \prime}$ thick floor finish. Supporting columns of 14 in square are spaced orthogonally at an interval at $31^{\prime}-2^{\prime \prime}$ and $25^{\prime}-2^{\prime \prime}$ on centers along longitudinal and transverse directions respectively. Width of each beam is 14 in . Using $B N B C / A C I$ code of moment coefficients design the slab by USD method, if $\mathrm{f}^{\prime}=3000 \mathrm{psi}$ and $f_{y}=60000$ psi.

Figure 3.8: Slab panel orientation and case types.
Here, $A=25^{\prime} 2^{\prime \prime}-1^{\prime} 2^{\prime \prime}=24^{\prime}$ and $B=31^{\prime} 2^{\prime \prime}-1^{\prime} 2^{\prime \prime}=30^{\prime}=1_{n}$.
$\mathrm{t}=\frac{l_{n}\left[\left(0.8+\left(\frac{f_{y}}{200000}\right)\right)\right.}{36+9 \beta}=\frac{30 *\left(0.8+\left(\frac{60000}{20000}\right)\right)}{36+9 * \frac{34}{24}}=8.38^{\prime \prime} \approx 8.5^{\prime \prime}$ say.

So, $d=8.5^{\prime \prime}-1^{\prime \prime}=7.5^{\prime}$
$\mathrm{W}_{\mathrm{DL}}=(8.5+0.5+1.5)^{*} 12.5 * 1.2=157.5 \mathrm{psf}$
$\mathrm{W}_{\mathrm{LL}}=\quad 100^{*} 1.6=160 \mathrm{psf}$
$\overline{\mathrm{W}_{\mathrm{u}}}=317.5 \mathrm{psf}$
$\mathrm{m}=\mathrm{A} / \mathrm{B}=24 / 30=0.8$

	2	4	8	9
$-\mathrm{C}_{\mathrm{A}}$	0.065	0.071	0.055	0.075
$-\mathrm{C}_{\mathrm{B}}$	0.027	0.029	0.041	0.017
$\mathrm{C}_{\mathrm{ADL}}$	0.026	0.039	0.032	0.029
$\mathrm{C}_{\mathrm{B} \text { DL }}$	0.011	0.016	0.015	0.010
$\mathrm{C}_{\mathrm{ALL}}$	0.041	0.048	0.044	0.042
$\mathrm{C}_{\mathrm{BLL}}$	0.017	0.020	0.019	0.017

Note 3.1: In this slab, there are four different types of cases among all panels. We take the maximum value of moment coefficient from four cases.

$$
\begin{aligned}
+\mathrm{M}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{ADL}} * \mathrm{~W}_{\mathrm{DL}} * \mathrm{~A}^{2}+\mathrm{C}_{\mathrm{ALL}} * \mathrm{~W}_{\mathrm{LL}} * \mathrm{~A}^{2} \\
& =0.039 * 157.5^{*} 24^{2}+0.048 * 160 * 24^{2} \\
& =7961.761 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =7.69 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{A}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~A}^{2} \\
& =0.075 * 317.5 * 24^{2} \\
& =13716 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =13.6 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
+\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} \mathrm{DL} * \mathrm{~W}_{\mathrm{DL}} * \mathrm{~B}^{2}+\mathrm{C}_{\mathrm{BLL}} * \mathrm{~W}_{\mathrm{LL}} * \mathrm{~B}^{2} \\
& =0.016 * 157.5 * 30^{2}+0.020 * 160 * 30^{2} \\
& =5148 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =5.148 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~B}^{2} \\
& =0.041 * 317.5 * 30^{2} \\
& =11716 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =11.716 \mathrm{k}-\mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

Rebar for short direction/transverse direction:
$+\mathrm{A}_{\mathrm{SA}}=\frac{\mathrm{M} * 12}{0.9 * \mathrm{f}_{\mathrm{y}} *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M} * 12}{0.9 * 60 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{7.96}{4.5 *(7.5-0.24)}=0.244 \mathrm{in}^{2} / \mathrm{ft}$
and $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}}^{\prime} \mathrm{b}}=\frac{\mathrm{A}_{\mathrm{s}} * 60}{0.85 * 3 * 12}=1.96 * \mathrm{~A}_{\mathrm{S}}=1.96 * 0.244=0.478 \mathrm{in}$.
$\mathrm{A}_{\mathrm{s} \min }=0.0018 * \mathrm{~b}^{*} \mathrm{t}^{*} 1.5=0.0018 * 12 * 8.5 * 1.5=0.275 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling).
Using $\Phi 10 \mathrm{~mm}$ bar,
$\mathrm{S}=\frac{\text { area of bar used } * \text { width of strip }}{\text { requried } \mathrm{A}_{\mathrm{s}}}=\frac{0.121 * 12}{0.275}=5.28^{\prime \prime} \approx 5 \mathrm{c} \mathrm{c} / \mathrm{c}$ at bottom along short direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{SA}_{\mathrm{A}}}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{13.61}{4.5 *(7.5-0.42)}=0.427 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling).
$\mathrm{a}=1.96 * \mathrm{~A}_{\mathrm{s}}=0.838$ in
$\mathrm{A}_{\mathrm{s} \text { min }}=0.275 \mathrm{in}^{2} / \mathrm{ft}$.
Already provided, $\mathrm{A}_{\mathrm{s} 1}=\frac{0.121 * 12}{10}=0.1452 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.4275-0.1452)=0.2823 \mathrm{in}^{2} / \mathrm{ft}$.

Using $\Phi 10 \mathrm{~mm}$ bar, $\mathrm{S}=5.14^{\prime \prime} \approx 5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.
Rebar along long direction:
$+\mathrm{A}_{\mathrm{S}}=\frac{5.148}{4.5 *(7.5-0.15)}=0.155 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s} \min }=0.275 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling).

Using $\Phi 10 \mathrm{~mm}$ bar @ $5.27^{\prime} \approx 5^{\prime \prime} \mathrm{c} / \mathrm{c}$ at bottom along long direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{SB}}=\frac{11.716}{4.5 *(7.5-0.36)}=0.365 \mathrm{in}^{2} / \mathrm{ft}$
Already provided, $\mathrm{A}_{\mathrm{sl}}=\frac{0.121 * 12}{10}=0.145 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.365-0.1452) \mathrm{in}^{2} / \mathrm{ft}=0.2198 \mathrm{in}^{2} / \mathrm{ft}$

Using $\Phi 10 \mathrm{~mm}$ bar @ $6.6^{\prime \prime} \approx 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.

Legends:

(1) Ø10@5"c/c althrough cranked alternatively.
(2) Ø 10 @ $6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top (3) Ø10@5"c/c althrough cranked alternatively. (4) Ø 10 @ $5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top. All beams arc $14 " \times 14$ " Slab Thickness= $8.5^{\prime \prime}$

Figure 3.9: Reinforcement details of slab in plan (Example \#02).

3.1.3 Relationship between length and steel area

Step 01: First of all, we select 13 slab panels randomly. Since, $\frac{\text { Shorter length }}{\text { Longer length }} \geq 0.5$ for all slab panels, so they are all two way slab.

Slab No.	Shorter length (in)	Longer length (in)
01	96	120
02	108	132
03	120	144
04	132	156
05	144	168
06	156	180
07	168	192
08	180	204
09	192	216
10	204	228
11	216	240
12	228	252
13	240	264

Step 02: Determine thickness for each slab panel by using: $\frac{\text { Perimeter }}{145}$ (in) and roundup them to the next 0.5 in .

Slab No.	Shorter length (in)	Longer length (in)	Thickness from $\frac{\text { Perimeter }}{\mathbf{1 4 5}}(\mathbf{i n)}$	Rounded thickness (in)
01	96	120	2.97931	3.5
02	108	132	3.310345	3.5
03	120	144	3.641379	4

Slab No.	Shorter length (in)	Longer length (in)	Thickness from $\frac{\text { Perimeter }}{\mathbf{1 4 5}}(\mathbf{i n})$	Rounded thickness (in)
04	132	156	3.972414	4
05	144	168	4.303448	4.5
06	156	180	4.634483	5
07	168	192	4.965517	5
08	180	204	5.296552	5.5
09	192	216	5.627586	6
10	204	228	5.958621	6
11	216	240	6.289655	6.5
12	228	252	6.62069	7
13	240	264	6.951724	7

Step 03: Calculation of factored load.
$\mathrm{W}_{\mathrm{DL}}=1.2 * \mathrm{DL}$ and $\mathrm{W}_{\mathrm{LL}}=1.6^{*} \mathrm{LL}$;
$W_{T}=W_{D L}+W_{L L}$
Where DL= Total dead load (i.e.: Slab self weight, Floor finish, Partition wall, Plaster etc.)

Note 3.2: In this case, DL is only slab self weight. Unit weight of concrete $=150 \mathrm{lb} / \mathrm{ft}^{3}$
LL= Live load $=60 \mathrm{psf}$.

Slab No.	$\mathbf{W}_{\mathbf{D L}}(\mathrm{ksf})$	$\mathbf{W}_{\mathbf{L L}}(\mathrm{ksf})$	$\mathbf{W}_{\mathbf{T}}(\mathrm{ksf})$
01	0.045	0.096	0.141
02	0.0525	0.096	0.1485
03	0.06	0.096	0.156
04	0.06	0.096	0.156
05	0.0675	0.096	0.1635
06	0.075	0.096	0.171

07	0.075	0.096	0.171
08	0.0825	0.096	0.1785
09	0.09	0.096	0.186
10	0.09	0.096	0.186
11	0.0975	0.096	0.1935
12	0.105	0.096	0.201
13	0.105	0.096	0.201

Step 04: Taking the maximum values of moment coefficients from Table 3.1, 3.2 and 3.3.

Those are: $\mathrm{C}_{\mathrm{A} \text { neg }}{ }^{\text {max }}=0.097$

$$
\begin{aligned}
& C_{B \operatorname{neg}}{ }^{\max }=0.076 \\
& \mathrm{C}_{\mathrm{ADL}}{ }^{\max }=0.095 \\
& \mathrm{C}_{\mathrm{BDL}}{ }^{\max }=0.036 \\
& \mathrm{C}_{\mathrm{ALL}}{ }^{\max }=0.095 \\
& \mathrm{C}_{\mathrm{BLL}}{ }^{\max }=0.036
\end{aligned}
$$

Using those values calculating moments from those equations:
Controlling moments $+\mathrm{M}_{\mathrm{A}},-\mathrm{M}_{\mathrm{A}},+\mathrm{M}_{\mathrm{B}},-\mathrm{M}_{\mathrm{B}}$.
$+\mathrm{M}_{\mathrm{A}}=\mathrm{C}_{\mathrm{ADL}}{ }^{\text {max }} \times \mathrm{W}_{\mathrm{DL}} \times \mathrm{A}^{2}+\mathrm{C}_{\mathrm{ALL}}{ }^{\max } \times \mathrm{W}_{\mathrm{LL}} \times \mathrm{A}^{2}$;
$-\mathrm{M}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} \text { neg }}{ }^{\text {max }} \times \mathrm{W}_{\mathrm{u}} \times \mathrm{A}^{2}$;
$+\mathrm{M}_{\mathrm{B}}=\mathrm{C}_{\mathrm{BDL}}{ }^{\max } \times \mathrm{W}_{\mathrm{DL}} \times \mathrm{B}^{2}+\mathrm{C}_{\mathrm{BLL}}{ }^{\max } \times \mathrm{W}_{\mathrm{LL}} \times \mathrm{B}^{2} ;$
$-M_{B}=C_{B ~ n e g}{ }^{\text {max }} \times W_{u} \times B^{2}$.

Slab No.	$+\mathbf{M}_{\mathbf{A}}(\mathrm{k}-\mathrm{ft} / \mathrm{ft})$	$-\mathbf{M}_{\mathbf{A}}(\mathrm{k}-\mathrm{ft} / \mathrm{ft})$	$+\mathbf{M}_{\mathbf{B}}(\mathrm{k}-\mathrm{ft} / \mathrm{ft})$	$-\mathbf{M}_{\mathbf{B}}(\mathrm{k}-\mathrm{ft} / \mathrm{ft})$
01	0.85728	0.875328	0.5076	1.0716
02	1.142708	1.166765	0.646866	1.365606
03	1.482	1.5132	0.808704	1.707264
04	1.79322	1.830972	0.949104	2.003664
05	2.23668	2.283768	1.153656	2.435496
06	2.745405	2.803203	1.3851	2.9241
07	3.18402	3.251052	1.575936	3.326976
08	3.815438	3.895763	1.857114	3.920574
09	4.52352	4.618752	2.169504	4.580064
10	5.10663	5.214138	2.417256	5.103096
11	5.95593	6.081318	2.7864	5.8824
12	6.893295	7.038417	3.191076	6.736716
13	7.638	7.7988	3.502224	7.393584

Step 05: Determine required steel area.

$$
\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{M}_{\mathrm{u}}}{\emptyset * \mathrm{f}_{\mathrm{y}} *\left(\mathrm{~d}-\frac{a}{2}\right)} ; \quad \text { Here, } \emptyset=0.9
$$

And $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} * \mathrm{f}_{\mathrm{y}}}{0.85 * \mathrm{f}^{c} * \mathrm{~b}}$
Note 3.3: Taking initially $\mathrm{a}=1$ for first trial.
According to ACI Code 318-11, section 13.3.1 the minimum reinforcement in each direction shall be as mentioned below:

For 40 grade rebar: $\mathrm{A}_{\mathrm{s} \min }=0.0020 \times \mathrm{b} \times \mathrm{h}$
60 grade rebar: $\mathrm{A}_{\mathrm{s} \min }=0.0018 \times \mathrm{b} \times \mathrm{h}$
>60 grade rebar: $\mathrm{A}_{\mathrm{s} \min }=\frac{0.0018 \times 60,000}{f_{y}} \times \mathrm{b} \times \mathrm{h}$

Note 3.4: In this case we take, $\mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}$ and $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=2500 \mathrm{psi}$

		Trial-01		Trial-02		Final	Controlling
Slab No.	$\mathbf{A}_{\mathbf{s} \text { min }}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	\mathbf{a} (in)	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{a}(\mathbf{i n)}$	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{A}_{\mathbf{s}}\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$
01	0.0648	0.127004	0.298834	0.102944	0.242221	0.101393	0.101393
02	0.0756	0.126968	0.298747	0.108029	0.254185	0.107014	0.107014
03	0.0864	0.131733	0.309961	0.115758	0.272371	0.114998	0.114998
04	0.0864	0.159397	0.375053	0.141688	0.333383	0.140646	0.140646
05	0.0972	0.16568	0.389835	0.150387	0.353851	0.149572	0.149572
06	0.108	0.174311	0.410145	0.160765	0.37827	0.160092	0.160092
07	0.108	0.20216	0.475671	0.188073	0.442524	0.187248	0.187248
08	0.1188	0.211969	0.49875	0.199471	0.469343	0.198783	0.198783
09	0.1296	0.223384	0.525609	0.212199	0.499291	0.211611	0.211611
10	0.1296	0.252179	0.593363	0.241278	0.567713	0.240622	0.240622
11	0.1404	0.264708	0.622842	0.255087	0.600205	0.254532	0.254532
12	0.1512	0.278517	0.655334	0.270055	0.635424	0.269582	0.269582
13	0.1512	0.308606	0.726132	0.301109	0.708492	0.300639	0.300639

$\underline{\text { Required steel area }\left(A_{s}\right) \text { for negative moment } M_{A} \text { : }}$

		Trial- 01		Trial- 02		Final	Controlling
Slab No.	$\mathbf{A}_{\mathbf{s} \text { min }}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	\mathbf{a} (in)	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{a}(\mathbf{i n})$	$\mathbf{A}_{\mathbf{s}}$ $(\mathbf{i n} / \mathbf{f t})$	$\mathbf{A}_{\mathbf{s}}\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$
01	0.0648	0.129678	0.305125	0.10529	0.247742	0.10368	0.10368
02	0.0756	0.129641	0.305036	0.110451	0.259884	0.109399	0.109399
03	0.0864	0.134507	0.316486	0.118331	0.278425	0.117543	0.117543
04	0.0864	0.162753	0.382948	0.144874	0.34088	0.143797	0.143797
05	0.0972	0.169168	0.398042	0.153743	0.361749	0.152903	0.152903

06	0.108	0.177981	0.418779	0.164336	0.386673	0.163643	0.163643
07	0.108	0.206416	0.485685	0.192288	0.452442	0.191441	0.191441
08	0.1188	0.216431	0.50925	0.203922	0.479816	0.203217	0.203217
09	0.1296	0.228087	0.536674	0.216919	0.510399	0.216319	0.216319
10	0.1296	0.257488	0.605855	0.246685	0.580435	0.246019	0.246019
11	0.1404	0.270281	0.635955	0.260787	0.613616	0.260226	0.260226
12	0.1512	0.28438	0.669131	0.276076	0.649591	0.275601	0.275601
13	0.1512	0.315103	0.741419	0.307866	0.72439	0.307401	0.307401

Required steel area $\left(\mathrm{A}_{\underline{s}}\right)$ for positive moment M_{B} :

		Trial-01		Trial-02		Final	Controlling
Slab No.	$\mathbf{A}_{\mathbf{s}}$ min $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	\mathbf{a} (in)	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{a}(\mathbf{i n})$	$\mathbf{A}_{\mathbf{s}}$ $\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$	$\mathbf{A}_{\mathbf{s}}\left(\mathbf{i n}^{2} / \mathbf{f t}\right)$
01	0.0648	0.0752	0.176941	0.05901	0.138848	0.058428	0.0648
02	0.0756	0.071874	0.169115	0.059512	0.140028	0.059156	0.0756
03	0.0864	0.071885	0.169141	0.061642	0.145039	0.061388	0.0864
04	0.0864	0.084365	0.198505	0.07271	0.171081	0.072367	0.0864
05	0.0972	0.085456	0.201073	0.075414	0.177445	0.075153	0.0972
06	0.108	0.087943	0.206924	0.078993	0.185866	0.07878	0.108
07	0.108	0.100059	0.235434	0.090207	0.212251	0.089938	0.108
08	0.1188	0.103173	0.24276	0.094252	0.221769	0.094026	0.1188
09	0.1296	0.107136	0.252085	0.098916	0.232743	0.09872	0.1296
10	0.1296	0.119371	0.280872	0.110538	0.26009	0.110302	0.1296
11	0.1404	0.12384	0.291388	0.115645	0.272106	0.115437	0.1404
12	0.1512	0.128932	0.30337	0.121253	0.285302	0.121066	0.1512
13	0.1512	0.141504	0.332951	0.133414	0.313915	0.133196	0.1512

$\underline{\text { Required steel area }\left(\mathrm{A}_{\mathrm{s}}\right) \text { for negative moment } \mathrm{M}_{\underline{B}} \text { : }}$

		Trial- 01		Trial- 02		Final	Controlling
$\begin{aligned} & \text { Slab } \\ & \text { No. } \end{aligned}$	$\begin{array}{r} \mathrm{A}_{\mathrm{s} \text { min }} \\ \left(\mathrm{in}^{2} / \mathrm{ft}\right) \end{array}$	$\underset{\left(\mathbf{i n}^{2} / \mathrm{ft}\right)}{\mathbf{A}_{\mathbf{s}}}$	a (in)	$\underset{\left(\mathbf{i n}^{2} / \mathbf{f t}\right)}{\mathbf{A}_{\mathbf{s}}}$	a (in)	$\begin{gathered} \mathbf{A}_{\mathbf{s}} \\ \left(\mathbf{i n}^{2} / \mathbf{f t}\right) \end{gathered}$	$\mathbf{A}_{\text {s }}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$
01	0.0648	0.158756	0.373542	0.131331	0.309014	0.129035	0.129035
02	0.0756	0.151734	0.357021	0.130721	0.307579	0.129344	0.129344
03	0.0864	0.151757	0.357075	0.134466	0.316392	0.133504	0.133504
04	0.0864	0.178103	0.419067	0.159564	0.375445	0.158327	0.158327
05	0.0972	0.180407	0.424487	0.164617	0.387335	0.163692	0.163692
06	0.108	0.185657	0.43684	0.171833	0.404313	0.171097	0.171097
07	0.108	0.211237	0.497027	0.197076	0.463708	0.196205	0.196205
08	0.1188	0.21781	0.512493	0.205299	0.483057	0.20459	0.20459
09	0.1296	0.226176	0.532179	0.215	0.505883	0.214405	0.214405
10	0.1296	0.252005	0.592952	0.2411	0.567295	0.240445	0.240445
11	0.1404	0.26144	0.615153	0.251751	0.592356	0.2512	0.2512
12	0.1512	0.272191	0.640448	0.263575	0.620177	0.263106	0.263106
13	0.1512	0.298731	0.702896	0.290874	0.68441	0.290399	0.290399

Step 06: After that, we developed comparison graphs of: $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in), $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in), $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in), $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in), and a Combined graph for those 13 slab panel.

Finally we found the "Least Squares $\left(R^{2}\right)$ " value and equation for each trend line of each graphs of calculated 13 slab panel.

Those graphs are given in the next chapter (Chapter 04: Results and Discussion).

3.2 Beam

3.2.1 Design steps of simplified beam design (Flexure design)

Step 01: Determine minimum thickness of beam.

Determine minimum thickness, $\mathrm{t}_{\text {min }}$ of beam according to ACI Code 318-11, section 9.5.2.1 (Table 2.7).

Step 02: Calculate $\mathrm{d}_{\text {given. }} \mathrm{d}_{\text {given }}=\mathrm{t}_{\text {min }}$ (roundup) -2.5 in . (For singly reinforced beam)
Step 03: Calculation of factored load.
$\mathrm{W}_{\mathrm{DL}}=1.2 * \mathrm{DL}$ and $\mathrm{W}_{\mathrm{LL}}=1.6^{*} \mathrm{LL}$;
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{DL}}+\mathrm{W}_{\mathrm{LL}}$
Where $\mathrm{DL}=$ Total dead load (i.e.: Slab self weight on beam, Self weight of beam, Floor finish, Partition wall, Plaster etc.)
LL= Live load.

Step 04: To design a beam maximum bending moments at mid span and supports are required. Moments can be calculated from exact analysis (i.e. moment distribution, slope deflection method etc) using finite element software package. But approximate bending moments can be calculated from ACI 318-11, section 8.3.3. Moment coefficients are given in the Table 2.2.

Step 05: Calculation of steel ratio, ρ
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\varepsilon_{\mathrm{u}}}{\varepsilon_{\mathrm{u}}+0.004}$ Here, $\varepsilon_{\mathrm{u}}=0.003$.
Step 06: Calculation of effective flange width, b.
As slab and beams are casted monolithically it is permitted to include the contribution of the slab in beam. Effective width of the flange can be calculated as per ACI 318-11, section 8.10 .2 which is given in the Table 2.6.

Step 07: Determination of $\mathrm{d}_{\text {req. }}$.
$\mathrm{R}_{\mathrm{n}}=\rho \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}}\right)$
Again, $\left(\mathrm{bd}^{2}\right)_{\text {req }}=\frac{M_{u}}{\emptyset R_{n}} \quad$ So, $d_{\text {req }}=\sqrt{ } \frac{M_{u}}{\emptyset b R_{n}}$
If, $\mathrm{d}_{\text {provided }}>\mathrm{d}_{\text {req }}$ (Ok). Otherwise, increase beam depth.
Step 08: Determine required steel area.
$A_{s}=\frac{M_{u}}{\emptyset * f_{y} *\left(d-\frac{a}{2}\right)} ; \quad \quad$ Here, $\emptyset=0.9$
And $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} * \mathrm{f}_{\mathrm{y}}}{0.85 * \mathrm{f}^{\prime} \mathrm{c} * \mathrm{~b}}$
According to ACI 318-11, section 10.5 minimum tensile reinforcement should be provided to resist the cracking moment. For any section minimum reinforcement can be calculated by the equation:

$$
\left(A_{s}\right)_{\min }=\frac{3 \sqrt{ } f_{c}^{\prime}}{f_{\mathrm{y}}} b_{\mathrm{w}} d \geq \frac{200}{f_{\mathrm{y}}} b_{\mathrm{w}} d, \quad \text { Where } \mathrm{f}_{\mathrm{c}}^{\prime} \text { and } \mathrm{f}_{\mathrm{y}} \text { are in psi. }
$$

3.2.2 Comparison table of required steel area for full roh and half roh of beam

At first we selected 7 beams randomly. Then we calculated required steel area $\left(\mathrm{A}_{\mathrm{s}}\right)$ for both positive and negative moments and for $\rho=\rho^{\max }$ and $\rho=0.5 \times \rho^{\max }$ for different load conditions, following step 01 to step 08 . Then we make a summary in a table for comparison.

Here, $\mathrm{L}=$ Length of span of beam (ft or m)
$b_{w}=$ Bottom width of beam (in or mm); S.T.= Slab thickness (in or mm)
$d=$ Effective depth of beam (in or mm); $a=$ Stress block depth (in or mm).

Table 3.4: Comparison table for required steel area for full roh and half roh of beam.

Beam Details	d (in) or (mm)		$\begin{aligned} & \mathbf{A}_{\mathbf{s} \text { min }} \\ & \left(\mathbf{i n}^{2}\right) \text { or } \\ & \left(\mathbf{m m}^{2}\right) \end{aligned}$	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2}\right)$ or $\left(\mathrm{mm}^{2}\right)$		- $\mathrm{A}_{\mathrm{S}}\left(\mathrm{in}^{2}\right)$ or (mm ${ }^{2}$)		a (in) or (mm)
	$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\boldsymbol{\rho}=0.5 \rho_{\text {max }}$		$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\rho=0.5 \rho_{\text {max }}$	$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\rho=0.5 \rho_{\text {max }}$	
$\begin{aligned} & \mathrm{L}=19 \mathrm{ft} ; \\ & \mathrm{b}_{\mathrm{w}}=12 \mathrm{in} ; \\ & \text { S.T. }=6 \mathrm{in} . \end{aligned}$	10	10	0.39	2.35	3.73	2.35	3.73	0.011099999999999714
$\begin{aligned} & \mathrm{L}=19 \mathrm{ft} ; \\ & \mathrm{b}_{\mathrm{w}}=12 \mathrm{in} ; \\ & \text { S.T. }=6 \mathrm{in} . \end{aligned}$	10	10	0.39	1.88	2.96	1.88	2.96	0.008889999999999804
$\begin{aligned} & \mathrm{L}=16 \mathrm{ft} ; \\ & \mathrm{b}_{\mathrm{w}}=12 \mathrm{in} ; \\ & \text { S.T. }=6 \mathrm{in} . \end{aligned}$	8	8	0.32	2.07	3.29	2.07	3.29	0.009699999999999771
$\begin{aligned} & \mathrm{L}=16 \mathrm{ft} ; \\ & \mathrm{b}_{\mathrm{w}}=15 \mathrm{in} ; \\ & \text { S.T. }=6 \mathrm{in} . \end{aligned}$	8	8	0.39	2.11	3.36	2.11	3.36	0.009899999999999763
$\begin{aligned} & \mathrm{L}=20 \mathrm{ft} ; \\ & \mathrm{b}_{\mathrm{w}}=15 \mathrm{in} ; \\ & \text { S.T. }=8 \mathrm{in} . \end{aligned}$	10.5	10.5	0.52	2.79	4.44	2.79	4.44	0.01316999999999963

Beam Details	d (in) or (mm)		$\begin{aligned} & \mathbf{A}_{\mathbf{A}_{\text {min }}} \\ & \left(\mathbf{i n}^{2}\right) \text { or } \\ & \left(\mathbf{m m}^{2}\right) \end{aligned}$	$+\mathrm{A}_{\text {s }}\left(\mathrm{in}^{2}\right)$ or (mm $\left.{ }^{2}\right)$		- $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2}\right)$ or (mm ${ }^{2}$)		a (in) or (mm)
	$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\boldsymbol{\rho}=0.5 \rho_{\text {max }}$		$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\rho=0.5 \rho_{\text {max }}$	$\boldsymbol{\rho}=\boldsymbol{\rho}_{\text {max }}$	$\rho=0.5 \rho_{\text {max }}$	
$\begin{aligned} & \mathrm{L}=5 \mathrm{~m} ; \\ & \mathrm{b}_{\mathrm{w}}=300 \mathrm{~mm} ; \\ & \text { S.T. }=150 \mathrm{~mm} . \end{aligned}$	206.5	206.5	206.70	1124.49	1779.57	1124.49	1779.57	0.008349999999999826
$\begin{aligned} & \mathrm{L}=5 \mathrm{~m} ; \\ & \mathrm{b}_{\mathrm{w}}=300 \mathrm{~mm} ; \\ & \text { S.T. }=150 \mathrm{~mm} . \end{aligned}$	176.5	176.5	174.53	1589.22	2549.11	1589.22	2549.11	0.011589999999999694

A JavaScript programming language based website has been created for simplified design of reinforced concrete buildings of moderate size and height. The user including the engineer, the architect, and common non-technical person can give very simple inputs, e.g. slab width, length etc. in this webpage and instantly get the visual results there. It can be used for initial structural design, verifying existing design and detail estimation of materials. Link of this website is given below:
http://simplifieddesignofconcretestructures.weebly.com

4.1 One way slab

4.1.1 Simplified design of one way slab

User needs to input the following information about the slab i.e. slab dimensions, slab support condition, yield strength and diameter of the steel in order to analyze the slab.

This analysis includes thickness of the slab, area of required steel and spacing of the rebar. Finally plan is shown showing the reinforcement detailing of the slab.

One way slab design

```
Slab Dimension
Note: The following simplified design is valid when
Length>=2* Width of slab and for }15\textrm{ft}\mathrm{ or }4.5\textrm{m}\mathrm{ maximum slab
width and theoretically infinite slab length.
-Meter
OFeet
Width: Width of slab
Length: Length of slab
```

Slab Support Condition
-Solid Slabs Continuous at one End
Solid Slabs Continuous at both Ends
-Simple span solid slabs
Cantilever

Figure 4.1: One way slab design webpage screenshot.

This webpage is uploaded to the following link:
http://simplifieddesignofconcretestructures.weebly.com/one-way-slab-design.html

4.2 Two way slab

4.2.1 Least Squares $\left(\mathbf{R}^{\mathbf{2}}\right)$ values of graphs for slab thickness

Determination

From alpha calculation (Article 3.1.1), we can see that, for all floor slabs of the plan values of alpha, $\alpha_{\text {avg }}>2$. So according to Article 2.2.1 we use ACI Eq. 9-13 for determining minimum slab thickness. That is given below:

For α_{m} greater than 2.0, the thickness must not be less than

$$
\mathrm{h}=\frac{l_{n}\left(0.8+\left(\frac{f_{y}}{200,000}\right)\right)}{36+9 \beta} \text { and not less than } 3.5 \text { inch..... (2.2) (ACI Eq. 9-13) }
$$

Where $l_{n}=$ clear span in long direction, in.

$$
\alpha_{\mathrm{m}}=\text { average value of } \alpha \text { for all beams on edges of a panel. }\left[\alpha=\frac{\mathbf{E}_{\mathrm{cb}} \mathbf{I}_{\mathrm{b}}}{\mathbf{E}_{\mathrm{cs}} \mathbf{I}_{\mathrm{s}}}\right]
$$

$\beta=$ ratio of clear span in long direction to clear span in short direction.
and $f_{y}=60,000$ psi.

Now, R^{2} (Least Squares) values of different slab thicknesses determination graphs are given below in a table:

Table 4.1: R^{2} (Least Squares) values of graphs for slab thickness determination.

Figure No.	Name of the diagram	\mathbf{R}^{2}
3.1	$\frac{\mathrm{P}_{\text {Inner }}}{145}$ (in) vs Thickness corresponding α, (in) diagram	0.970
3.2	$\frac{\mathrm{Pc} / \mathrm{c}}{145}$ (in) vs Thickness corresponding α, (in) diagram	0.97
3.3	$\frac{\mathrm{P}_{\text {Outer }}}{145}$ (in) vs Thickness corresponding α, (in) diagram	0.970
3.4	$\frac{\mathrm{P}}{150}$ (in) vs Thickness corresponding α, (in) diagram	0.970
3.5	$\frac{\mathrm{P}}{160}$ (in) vs Thickness corresponding α, (in) diagram	0.969
3.6	$\frac{\mathrm{P}}{180}$ (in) vs Thickness corresponding α, (in) diagram	0.97

Though all the R^{2} values are 0.970 or near to 0.970 , we will use $\frac{\mathrm{P}_{\text {Outer }}}{145}$ for thickness determination as we don't know the beam dimensions for preliminary design and the design will be safe design.

$$
\text { Thickness }(\text { in })=\frac{\text { Perimeter }}{145}
$$

4.2.2 Least Squares $\left(\mathbf{R}^{\mathbf{2}}\right)$ values of graphs for the relation between length and steel area

Length vs steel area relationship graphs are given below:
R^{2} (Least Squares) values of length vs steel area relationship graphs are incorporated in a table:

Figure 4.2: $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Linear trend line)

Figure 4.3: $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Linear trend line)

Figure 4.4: $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Linear trend line)

Figure 4.5: $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Linear trend line)

Figure 4.6: Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in). (Linear trend line)

Figure 4.7: $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Polynomial trend line, order 2)

Figure 4.8: $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram. (Polynomial trend line, order 2)

Figure 4.9: $+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Polynomial trend line, order 2)

Figure 4.10: $-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram. (Polynomial trend line, order 2)

Figure 4.11: Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in). (Polynomial trend line,
order 2)

Table 4.2: R^{2} (Least Squares) values of graphs for the length vs steel area relationship (Linear trend line).

Figure No	Name of the diagram	Equation of the trend line	$\mathbf{R}^{\mathbf{2}}$
4.2	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram	$\mathrm{y}=0.001 \mathrm{x}-0.045$	0.986
4.3	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram	$\mathrm{y}=0.001 \mathrm{x}-0.046$	
4.4	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram	$\mathrm{y}=0.000 \mathrm{x}-0.004$	
4.5	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram	$\mathrm{y}=0.001 \mathrm{x}-0.023$	0.986
4.6	Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in)	$\mathrm{y}=0.001 \mathrm{x}-0.001$	0.979

Table 4.3: R^{2} (Least Squares) values of graphs for the length vs steel area relationship (Polynomial trend line, order 2).

Figure No	Name of the diagram	Equation of the trend line	$\mathbf{R}^{\mathbf{2}}$
4.7	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram	$\mathrm{y}=3 \mathrm{E}-06 \mathrm{x}^{2}+0.000 \mathrm{x}+$ 0.038	0.995
4.8	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Short span (in) diagram	$\mathrm{y}=3 \mathrm{E}-06 \mathrm{x}^{2}+0.000 \mathrm{x}+$ 0.039	0.995
4.9	$+\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram	$\mathrm{y}=-4 \mathrm{E}-07 \mathrm{x}^{2}+0.000 \mathrm{x}-$ 0.017	0.988
4.10	$-\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Long span (in) diagram	$\mathrm{y}=3 \mathrm{E}-06 \mathrm{x}^{2}-7 \mathrm{E}-05 \mathrm{x}+$ 0.086	0.991
4.11	Combined diagram of $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{ft}\right)$ vs Span length (in)	$\mathrm{y}=-1 \mathrm{E}-06 \mathrm{x}^{2}+0.001 \mathrm{x}-2.490$ 0.039	0

4.2.3 Simplified design of a two way slab

User needs to input the following information about the slab i.e. slab dimensions, occupancy of the slab, various loading conditions on slab, yield strength and diameter of the steel, properties of concrete and concrete mix ratio in order to analyze the slab.

This analysis includes thickness of the slab, area of required steel and spacing of the rebar. Finally plan is shown showing the reinforcement detailing of the slab. It also shows the quantity of constituents used in the mixture.

Two way slab design

```
Slab Dimension
Note: This design is valid when the ratio of slab length to width is less than 2 i.e L/W<2.
For example, if slab width is 10m then slab length must be less than 20m.
This design is based on ACI 318-11 and BNBC93 and you may find this as conservative.
-Meter
-Feet
Width: Width of slab
Length: Length of slab
```

Use of floor slab
-Residential
Commercial
$\left\lvert\, \begin{aligned} & \text { Partition wall-} \\ & \text { With partition wall } \\ & \text { Without partition wal }\end{aligned}\right.$
Grade/Yield strength of steel

- 40 ksi
60 ksi
72.5 ksi (500 MPa)
Oother (please specify the yield strength of steel below)
-ksi
MPa
Yield strength of steel
Note: $1 \mathrm{MPa}=145 \mathrm{psi}$

```
Concrete 28 day 6 by }12\mathrm{ inches cylinder compressive strength
02000 psi (13.7 MPa)
2500 psi (17.2 MPa)
3000 psi (20.7 MPa)
3500 psi (24.13 MPa)
4000 psi (27.6 MPa)
Other (please specify the compressive strength below)
- Psi
    MPa
Please provide a value between 2000psi and 4000psi (13.7MPa and 27.6MPa):
Compressive strength of concrete
Note: 1 MPa = 145 psi
```

Concrete mix ratio
-1: 1.5:3
1:2:4
OOther (please specify your preferred mix ratio below)
Concrete mix ratio (Manual): Ceme Sand Aggre

Chose rebar diameter
$10 \mathrm{~mm} / \# 3$
$12 \mathrm{~mm} / \# 4$
14 mm
Analyze

Figure 4.12: Two way slab design webpage screenshot.
This webpage is uploaded to the following link:
http://simplifieddesignofconcretestructures.weebly.com/two-way-slab-design.html

4.3 Beam

4.3.1 Simplified design of a beam (Flexure design)

User needs to input the following information about the beam i.e. beam dimensions, beam support condition, position of the beam, various loading condition on the beam, slab thickness, yield strength and diameter of the steel and the proportion of various constituents used in the mixture in order to analyze the beam.

This analysis shows area of steel required.

Design of a beam

```
Manual input
Note: This design conforms with ACl.318-11.
This design is valid for beams with two spans or more.
Unit Selection
-Feet
Meter
Length of beam (center to center distance between columns)(ft): Beam length/Span length
Bottom width of beam (inch):
Width of Beam Section
Note: Bottom width of beam should be a multiple of 2 or 3
Bottom width of beam should be equal or greater than column dimension
Slab thickness; from one way or two way slab design (inch): Thickness of slab
```


Support condition of Beam
One End Continuous
Both End Continuous
Cantilever

```
Extra load
    Floor finish
-30 psf load on the effective area of slab
    Other
Please provide a value in psf unit Manual Floor finish load
Note: 1 psf = 4.88kg/m}\mp@subsup{}{}{2}\mathrm{ Effective area is the area that contributes in transfering load on beam
Partition wall
*40 psf load on the effective area of slab
) Other (Maximum 40psf)
Please provide a value in psf unit Manual Partition wall toad
Note: 1 psf = 4.88kg/m}\mp@subsup{}{}{2}\mathrm{ Effective area is the area that contributes in transfering load on beam
```

Extra load
Floor finish

- 30 psf load on the effective area of slab

Other
Please provide a value in psf unit Manual Floor finish load
Note: $1 \mathrm{psf}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ Effective area is the area that contributes in transfering load on beam
\square Partition wall

- 40 psf load on the effective area of slab

DOther (Maximum 40psf)
Please provide a value in psf unit Manual Partition wall load
Note: $1 \mathrm{psf}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ Effective area is the area that contributes in transfering load on beam

```
Intended use of building
-Residential Building (Assumed 40 psf load on the effective area of slab)
OCommercial Building (Assumed 100 psf load on the effective area of slab)
OOther (Maximum 100psf)
Please provide a value in psf unit Manual Live load
Note: 1psf=4.88\textrm{kg}/\mp@subsup{\textrm{m}}{}{2}
```

```
[Concrete compressive strength at 28 days for 6"x12" cylinder
02000 psi (13.7 MPa)
2500 psi (17.2 MPa)
3000 psi (20.7MPa)
3500 psi (24.13 MPa)
4000 psi (27.6 MPa)
Oother (please specify the compressive strength below)
- Psi
    MPa
Please provide a value between 2000psi and 4000psi (13.7MPa and 27.6MPa):
Compressive strength of concrete
Note: 1 MPa = 145 psi
```

Grade/Yield strength of stee
-60 ksi (413.8 MPa)
72.5 ksi (500 MPa
Other (please specify the yield strength of steel below)

- Psi
MPa
Yield strength of steel (Manual): Yield strength of steel
Note: $1 \mathrm{MPa}=145 \mathrm{psi}$

Analyze

Figure 4.13: Beam design webpage screenshot.

This webpage is uploaded to the following link:
http://simplifieddesignofconcretestructures.weebly.com/beam-design.html

4.3.2 Maximum and minimum no. of bars in a single layer of beam

Figure 4.14: Maximum and minimum no. of bars in a single layer of beam excel file screenshot.

4.3.3 Simplified design of beam (Shear design)

Figure 4.15 (a): Design of shear of beam excel file screenshot.

Figure 4.15 (b): Design of shear of beam excel file screenshot.

Figure 4.15 (c): Design of shear of beam excel file screenshot.

Chapter 05

 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion

The purpose of this paper is to give practicing engineers some way of reducing the design time required for smaller projects, while still complying with the letter \& intent of the ACI Standard 318, Building Code Requirements for Structural Concrete. Here design load \& live load are considered in accordance of the code. If wind load, resistance to earthquake, induced forces, earth or liquid pressure, impact effects or structural effects of differential settlement need to be included in the design, such effects should be considered separately. They are not included within the scope of simplified design techniques presented here.

This simplified design approach can be used for conventionally reinforced concrete buildings of moderate size \& height with usual spans \& story height. This paper was prepared for the purpose of suggesting the design of one way slab, two way slab \& both shear and flexural design of beam, using nominal amount of parameter. Here most numbers of parameter in design procedure are taken as a constant value. The main reason behind this is to shorten the time \& effort of the designer. Simplified design procedures comply with the provisions of Building Code Requirements for Structural Concrete (ACI 318) using appropriate load factors \& strength reduction factors.

The design is formulated in excel \& java script which would help the designers \& those who are interested in designing the slab \& beam in shortest possible time, with minimum amount of effort. Simplified design of other units of structure like columns, footing, stair, shear wall will be carry forward in future.

5.2 Recommendations

1) This paper contains simplified design of reinforced beams and slabs. In order to complete the full building, simplified design of other structural units of building i.e. columns, footings, shear wall etc. have to be formulated.
2) The design can be simplified if the parameters like strength of rebar and concrete can be made constant (i.e. $\mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}, \mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000 \mathrm{psi}$).
3) Here the formula $\frac{\text { Peremeter }}{145}$ is used to determine the thickness of slab. But $\frac{\text { Peremeter }}{150}$, $\frac{\text { Peremeter }}{160}, \frac{\text { Peremeter }}{180}$ can also be used for determining the slab thickness for economic purpose.
4) Here for design purpose only dead load and live load are considered. But if other loads i.e. wind load and earthquake loads are to be considered, then this loads are taken into account separately in design procedure.

APPENDIX

Figure A.01: Partial plan of a slab (for alpha calculation).

Slab Thickness=5in

Figure A.02: Partial plan of a slab (for alpha calculation).

Slab Thickness= 5 in

Figure A.03: Partial plan of a slab (for alpha calculation).

Slab Thickness $=6$ in

Figure A.04: Partial plan of a slab (for alpha calculation).

Slab Thickness $=6$ in

Figure A.06: Partial plan of a slab (for alpha calculation).

Slab Thickness= 6 in

Figure A.07: Partial plan of a slab (for alpha calculation).

Slab Thickness= 6 in

Figure A.08: Partial plan of a slab (for alpha calculation).

Slab Thickness= 6 in

Figure A.09: Partial plan of a slab (for alpha calculation).

Figure A.10: Partial plan of a slab (for alpha calculation).

Example \#03:

Determination of steel area of a one way slab

A reinforced concrete slab is built integrally with its supports and consists of two equal spans, each with a clear span of 15 ft . The service live load is 40 psf and 4000 psi concrete is specified for the use with steel with yield stress equal to 60000 psi .

Solution: According to ACI minimum thickness (Table 2.1):
$1_{\mathrm{n}} / 28=15 \times 12 / 28=6.43 \mathrm{in} \approx 6.50 \mathrm{in}$.

Self-weight of slab $=150 \times 6.50 / 12=81.25 \mathrm{psf} \quad$ (According to ACI , unit weight of concrete is $150 \mathrm{lb} / \mathrm{ft}^{3}$)

The specified live load and computed dead load are multiplied by the ACI load factors:
Dead load $=81.5 \times 1.2=97.8 \mathrm{psf}$

Live load $=40 \times 1.6=64 \mathrm{psf}$

$$
\text { Total load = } 161.8 \mathrm{psf}
$$

Using ACI moment coefficient (Table 2.2):
At interior support: $-\mathrm{M}=1 / 9 \times 0.161 \times 15^{2}=4.025 \mathrm{ft}$-kip
At mid-span: $+\mathrm{M}=1 / 14 \times 0.161 \times 15^{2}=2.5875$ ft-kip
At exterior support: $-\mathrm{M}=1 / 24 \times 0.161 \times 15^{2}=1.51 \mathrm{ft}$-kip
Now, $\rho_{\max }=0.85 \times \beta \times \mathrm{f}^{\prime} d \mathrm{f}_{\mathrm{y}} \times \frac{0.003}{0.003+0.004}=(0.85)^{2} \times 4 / 60 \times \frac{0.003}{0.003+0.004}=0.021$
Minimum required effective depth would be found from ACI equation,
$\mathrm{d}^{2}=\frac{\mathrm{M}_{\mathrm{u}}}{\phi \rho \mathrm{f}_{\mathrm{y}} \mathrm{b}\left(1-0.59 \rho\left(\frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}^{\prime}}}\right)\right)}=\frac{4.025 \times 12}{0.9 \times 0.021 \times 60 \times 12 \times\left(1-0.59 \times 0.021 \times\left(\frac{60}{4}\right)\right)}=4.36 \mathrm{in}^{2}$

Now, $\mathrm{d}=2.08$ in $\approx 2.1 \mathrm{in}$.
Assumed effective depth $=(6.50-1)$ in $=5.50 \mathrm{in}$. Which is greater than the required effective depth. So, final slab thickness $=6.50 \mathrm{in}$.

Assume, stress block depth, $\mathrm{a}=1 \mathrm{in}$.
The area of steel required per foot width in the top of the slab is,
$A_{s}=\frac{M_{u}}{\phi f_{y}\left(d-\left(\frac{\mathrm{a}}{2}\right)\right)}=\frac{4.025 \times 12}{0.9 \times 60 \times(5.5-0.5)}=0.179 \mathrm{in}^{2}$
Checking $\mathrm{a}, \mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}}^{\prime} \mathrm{b}}=\frac{0.179 \times 60}{0.85 \times 4 \times 12}=0.26$ in.
Trail 2: $\mathrm{a}=0.26$ in. So, $\mathrm{A}_{\mathrm{s}}=\frac{4.025 \times 12}{0.9 \times 60 \times(5.5-0.13)}=0.166 \mathrm{in}^{2}$
Again checking a, $\mathrm{a}=\frac{0.166 \times 60}{0.85 \times 4 \times 12}=0.245 \mathrm{in} . \approx 0.26$ in. (Ok)
Final A_{s}, At interior support, $\mathrm{A}_{\mathrm{s}}=\frac{4.025 \times 12}{0.9 \times 60 \times(5.5-0.125)}=0.166 \mathrm{in}^{2} / \mathrm{ft}($ Controlling $)$
At mid span, $\mathrm{A}_{\mathrm{s}}=\frac{2.588 \times 12}{0.9 \times 60 \times(5.5-0.125)}=0.107 \mathrm{in}^{2} / \mathrm{ft}\left(\right.$ Controlling $\left.\mathrm{A}_{\mathrm{s}(\mathrm{min})}\right)$
At exterior support, $\mathrm{A}_{\mathrm{s}}=\frac{1.51 \times 12}{0.9 \times 60 \times(5.5-0.125)}=0.06 \mathrm{in}^{2} / \mathrm{ft}\left(\right.$ Controlling $\left.\mathrm{A}_{\mathrm{s}(\mathrm{min})}\right)$
$\mathrm{A}_{\mathrm{s}(\min)}=0.0018 \times \mathrm{b} \times \mathrm{t}=0.0018 \times 12 \times 6.5=0.14 \mathrm{in}^{2} / \mathrm{ft}$

Temperature \& shrinkage reinforcement:

According to ACI Code, minimum temperature \& shrinkage reinforcement, $\mathrm{A}_{\mathrm{s}(\mathrm{min})}$ should be provided along the transverse direction of the main reinforcement.

Example \#04:

Two way slab design (Interior slab panel)

Solution:

Here, $A=20^{\prime}$ and $B=25^{\prime}=1_{n}$
Thickness, $\mathrm{t}=7$ 7" (given)
So, $d=(7 "-1$ " $)=6 "$
Dead load, $\mathrm{W}_{\mathrm{DL}}=(7+0.5+1.5) * 12.5 * 1.2=135 \mathrm{psf}$
Live load, $\mathrm{W}_{\mathrm{LL}}=\quad 100 * 1.6=160 \mathrm{psf}$
Total factored load, $\mathrm{W}_{\mathrm{u}}=295 \mathrm{psf}$
$\mathrm{m}=\mathrm{A} / \mathrm{B}=20 / 25=0.8$

	Case 2
$-\mathrm{C}_{\mathrm{A}}$	0.065
$-\mathrm{C}_{\mathrm{B}}$	0.027
$\mathrm{C}_{\mathrm{A} \mathrm{DL}}$	0.026
$\mathrm{C}_{\mathrm{B} \mathrm{DL}}$	0.011
$\mathrm{C}_{\mathrm{ALL}}$	0.041
$\mathrm{C}_{\mathrm{BLL}}$	0.017

$$
=0.026 * 135 * 20^{2}+0.041 * 160 * 20^{2}
$$

$$
\begin{aligned}
& =4028 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =4.208 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{A}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~A}^{2} \\
& =0.065 * 295 * 20^{2} \\
& =7670 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =7.67 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
+\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} \mathrm{dL} * \mathrm{~W}_{\mathrm{DL}} * \mathrm{~B}^{2}+\mathrm{C}_{\mathrm{B}} \mathrm{LL} * \mathrm{~W}_{\mathrm{LL}} * \mathrm{~B}^{2} \\
& =0.011 * 135 * 25^{2}+0.017 * 160 * 25^{2} \\
& =2628.125 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =2.628 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~B}^{2} \\
& =0.027 * 295 * 25^{2} \\
& =4978.125 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =4.978 \mathrm{k}-\mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

Rebar for short direction/transverse direction:
$+\mathrm{A}_{\mathrm{SA}_{\mathrm{A}}}=\frac{\mathrm{M} * 12}{0.9 * \mathrm{f}_{\mathrm{y}} *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M} * 12}{0.9 * 60 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{4.028}{4.5 *\left(6-\frac{0.319}{2}\right)}=0.153 \mathrm{in}^{2} / \mathrm{ft}$
and $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}} \mathrm{b}}=\frac{\mathrm{A}_{\mathrm{s}} * 60}{0.85 * 3 * 12}=0.3$ in
$\mathrm{A}_{\mathrm{s} \text { min }}=0.0018 * \mathrm{~b}^{*} \mathrm{t}^{*} 1.5=0.0018 * 12 * 7 * 1.5=0.2268 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling)
Using $\Phi 10 \mathrm{~mm}$ bar
$S=\frac{\text { area of bar used } * \text { width of strip }}{\text { requried } A_{s}}=\frac{0.121 * 12}{0.2268}=6.4^{\prime \prime} \approx 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ at bottom along short direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{SA}_{\mathrm{A}}}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{7.67}{4.5 *(6-0.60 / 2)}=0.3 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling)
$\mathrm{A}_{\mathrm{s} \min }=0.2268 \mathrm{in}^{2} / \mathrm{ft}$
Already provided, $\mathrm{A}_{\mathrm{sl}}=\frac{0.121 * 12}{12}=0.121 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.3-0.121)=0.179 \mathrm{in}^{2} / \mathrm{ft}$

Using $\Phi 10 \mathrm{~mm}$ bar, $\mathrm{S}=8.11^{\prime \prime} \approx 8^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.
Rebar along long direction:
$+\mathrm{A}_{\mathrm{SB}}=\frac{2.628}{4.5 *(6-0.2082 / 2)}=0.1 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s} \min }=0.2268 \mathrm{in}^{2} / \mathrm{ft}($ Controlling $)$

Using $\Phi 10 \mathrm{~mm}$ bar @ $6.4^{\prime \prime} \approx 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ at bottom along long direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{S}_{\mathrm{B}}}=\frac{4.978}{4.5 *(6-0.394 / 2)}=0.19 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s} \min }=0.2268 \mathrm{in}^{2} / \mathrm{ft}($ Controlling $)$
Already provided, $\mathrm{A}_{\mathrm{sl}}=\frac{0.121 * 12}{12}=0.121 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.2268-.121) \mathrm{in}^{2} / \mathrm{ft}=0.2198 \mathrm{in}^{2} / \mathrm{ft}$
Using $\Phi 10 \mathrm{~mm}$ bar @ $13.72^{\prime \prime} \approx 13.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.

Legends:

(1) Ø 10 mm @ $6^{\prime \prime} \mathrm{c} / \mathrm{c}$ althrough cranked alternatively.
(2) Ø 10 mm @ $13.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.
(3) Ø $10 \mathrm{~mm} @ 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ althrough cranked alternatively.
(4) Ø 10 mm @ $8 " \mathrm{c} / \mathrm{c}$ extra top. All beams are $14^{\prime \prime} \times 14^{\prime \prime}$
Slab Thickness $=7{ }^{\prime \prime}$

Figure A.11: Reinforcement details of a slab (Example \#04).

Example \#05:

Two way slab design (Exterior slab panel)

Solution:

Here, $\mathrm{A}=20^{\prime}$ and $\mathrm{B}=25^{\prime}=1_{\mathrm{n}}$.
Thickness, $\mathrm{t}=7$ 7" (given)
So, $d=(7 "-1$ " $)=6 "$
Dead load, $\mathrm{W}_{\mathrm{DL}}=(7+0.5+1.5) * 12.5 * 1.2=135 \mathrm{psf}$
Live load, $\mathrm{W}_{\mathrm{LL}}=\quad 100 * 1.6=160 \mathrm{psf}$
Total factored load, $\mathrm{W}_{\mathrm{u}} \quad=295 \mathrm{psf}$
$\mathrm{m}=\mathrm{A} / \mathrm{B}=20 / 25=0.8$

	Case 9
$-\mathrm{C}_{\mathrm{A}}$	0.075
$-\mathrm{C}_{\mathrm{B}}$	0.017
$\mathrm{C}_{\mathrm{ADL}}$	0.029
$\mathrm{C}_{\mathrm{B} \mathrm{DL}}$	0.010
$\mathrm{C}_{\mathrm{ALL}}$	0.042
$\mathrm{C}_{\mathrm{BLL}}$	0.017

$$
=0.029 * 135 * 20^{2}+0.042 * 160 * 20^{2}
$$

$$
\begin{aligned}
& =4254 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =4.254 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{A}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~A}^{2} \\
& =0.075 * 295 * 20^{2} \\
& =8850 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =8.85 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
+\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} \mathrm{DL}^{*} \mathrm{~W}_{\mathrm{DL}} * \mathrm{~B}^{2}+\mathrm{C}_{\mathrm{B}} \mathrm{LL}^{*} \mathrm{~W}_{\mathrm{LL}} * \mathrm{~B}^{2} \\
& =0.010 * 135 * 25^{2}+0.017 * 160 * 25^{2} \\
& =2543.75 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
& =2.543 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
-\mathrm{M}_{\mathrm{B}} & =\mathrm{C}_{\mathrm{B}} * \mathrm{~W}_{\mathrm{u}} * \mathrm{~B}^{2} \\
= & 0.017 * 295 * 25^{2} \\
= & 3134.75 \mathrm{lb}-\mathrm{ft} / \mathrm{ft} \\
= & 3.164 \mathrm{k}-\mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

Rebar for short direction/transverse direction:

$+\mathrm{A}_{\mathrm{SA}_{A}}=\frac{\mathrm{M} * 12}{0.9 * \mathrm{f}_{\mathrm{y}} *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M} * 12}{0.9 * 60 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{8.85}{4.5 *\left(6-\frac{0.7}{2}\right)}=0.1673 \mathrm{in}^{2} / \mathrm{ft}$
and $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}}^{\prime} \mathrm{b}}=\frac{\mathrm{A}_{\mathrm{s}} * 60}{0.85 * 3 * 12}=0.7$ in
$\mathrm{A}_{\mathrm{smin}}=0.0018 * \mathrm{~b}^{*} \mathrm{t}^{*} 1.5=0.0018 * 12 * 7 * 1.5=0.2268 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling)
Using $\Phi 10 \mathrm{~mm}$ bar
$S=\frac{\text { area of bar used } * \text { width of strip }}{\text { requried } A_{s}}=\frac{0.121 * 12}{0.2268}=6.4^{\prime \prime} \approx 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ at bottom along short direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{SA}_{\mathrm{A}}}=\frac{\mathrm{M}}{4.5 *\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)}=\frac{7.67}{4.5 *(6-0.6 / 2)}=0.3 \mathrm{in}^{2} / \mathrm{ft}$ (Controlling)
$\mathrm{A}_{\mathrm{s} \min }=0.2268 \mathrm{in}^{2} / \mathrm{ft}$
Already provided, $\mathrm{A}_{\mathrm{s} 1}=\frac{0.121 * 12}{12}=0.121 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.3-0.121)=0.179 \mathrm{in}^{2} / \mathrm{ft}$

Using $\Phi 10 \mathrm{~mm}$ bar, $S=8.11^{\prime \prime} \approx 8^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.

Rebar along long direction:

$+\mathrm{A}_{\mathrm{SB}}=\frac{2.543}{4.5 *(6-0.2 / 2)}=0.095 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s} \min }=0.2268 \mathrm{in}^{2} / \mathrm{ft}($ Controlling $)$

Using $\Phi 10 \mathrm{~mm}$ bar @ $6.4 " \approx 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ at bottom along long direction crank 50% bar to negative zone.
$-\mathrm{A}_{\mathrm{SB}}=\frac{3.134}{4.5 *(6-0.248 / 2)}=0.118 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s} \text { min }}=0.2268 \mathrm{in}^{2} / \mathrm{ft}$. (Controlling)
Already provided, $\mathrm{A}_{\mathrm{sl}}=\frac{0.121 * 12}{12}=0.121 \mathrm{in}^{2} / \mathrm{ft}$
Extra top required, $\mathrm{A}_{\mathrm{s} 2}=(0.2268-.121) \mathrm{in}^{2} / \mathrm{ft}=0.2198 \mathrm{in}^{2} / \mathrm{ft}$

Using $\Phi 10 \mathrm{~mm}$ bar @ $13.72^{\prime \prime} \approx 13.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.

Legends:

(1) Ø 10 mm @ $6^{\prime \prime} \mathrm{c} / \mathrm{c}$ althrough cranked alternatively.
(2) $\varnothing 10 \mathrm{~mm} @ 13.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ extra top.
(3) Ø $10 \mathrm{~mm} @ 6^{\prime \prime} \mathrm{c} / \mathrm{c}$ althrough cranked alternatively.
(4) Ø 10 mm @ $8 " \mathrm{c} / \mathrm{c}$ extra top.

All beams are $14 " \times 14^{\prime \prime}$
Slab Thickness=7"

Figure A.12: Reinforcement details of a slab (Example \#05).

Example \#06:

Simplified design of a beam (Flexure design)

Design an interior beam of 16 ft long. Width of beam is 12 in . Slab thickness is 6 in . Clear span of beam along right and left side is 16 ft and 14 ft respectively. The beam is one end continuous. Live load is 40 psf. No partition wall. Floor finish load is 30 psf given. If $f^{\prime}{ }_{c}=3,000$ psi and $f_{y}=60,000$ psi, design the beam for flexure only.

Solution: According to ACI Code (Table 2.7) minimum thickness of beam:

$$
\begin{aligned}
\mathrm{t}_{\min } & =\frac{1}{18.5} \quad \text { Where, } \mathrm{l}=\text { length of the beam. } \\
& =\frac{16 * 12}{18.5}=10.378 \text { in } \approx 10.5 \text { in (say). }
\end{aligned}
$$

So, effective depth of the beam, $\mathrm{d}_{\text {given }}=(10.5-2.5)$ in $=8$ in
Self weight of the slab $=(16 / 2+14 / 2)^{*}(6 / 12) * 0.15 \mathrm{k} / \mathrm{ft}=1.125 \mathrm{k} / \mathrm{ft}$
Live load $=\left(15^{*} 0.04\right)+(12 / 12 * 0.04) \mathrm{k} / \mathrm{ft}=0.64 \mathrm{k} / \mathrm{ft}$
Self weight of beam $=\frac{10.5 * 12}{144} * 0.15 \mathrm{k} / \mathrm{ft}=0.13125 \mathrm{k} / \mathrm{ft}$
Floor finish $=\left(8+7+\frac{12}{12}\right) * 0.03 \mathrm{k} / \mathrm{ft}=0.48 \mathrm{k} / \mathrm{ft}$
Total load $=(1.2 *$ dead load $)+(1.6 *$ live load $)$

$$
=1.2 \times(1.125+0.13125+0.48)+1.6 * 0.64 \mathrm{k} / \mathrm{ft}=3.1075 \mathrm{k} / \mathrm{ft}
$$

Maximum positive moment, $+\mathrm{M}=\frac{\mathrm{wl}^{2}}{14}=\left(3.1075 * 16^{2}\right) / 14=56.823 \mathrm{k}-\mathrm{ft}$
Maximum negative moment, $-\mathrm{M}=\frac{\mathrm{wl}^{2}}{9}=\left(3.1075^{*} 16^{2}\right) / 9=88.391 \mathrm{k}-\mathrm{ft}$
Here, $\rho=0.85 * \beta_{1} *\left(f^{\prime}{ }_{d} / \mathrm{f}_{\mathrm{y}}\right) *\left\{\varepsilon_{\mathrm{u}} /\left(\varepsilon_{\mathrm{u}}+\varepsilon_{\mathrm{t}}\right)\right\}=0.85 * 0.85 *(4 / 60) *\{0.003 /(0.003+0.004)\}$ $=0.015482$
b will be the smallest of,
$\mathrm{b} \leq(16 / 4)^{*} 12=48 \mathrm{in}$, or (Selecting)
$\leq 16 h_{f}+b_{w}=108$ in, or
$\leq(\mathrm{c} / \mathrm{c}$ distance $/ 2)=90 \mathrm{in}$.
Now, $\mathrm{R}_{\mathrm{n}}=\rho \mathrm{f}_{\mathrm{y}}\left(1-\frac{0.5 \rho \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime}}\right)=759.73 \mathrm{psi}$
Again, $\left(\mathrm{bd}^{2}\right)_{\mathrm{req}}=\frac{\mathrm{M}_{\mathrm{u}}}{\emptyset \mathrm{R}_{\mathrm{n}}}$
So, $\mathrm{d}_{\mathrm{req}}=\sqrt{ } \frac{\mathrm{M}_{\mathrm{u}}}{\varnothing \mathrm{bR} \mathrm{R}_{\mathrm{n}}}=5.68$ in. Here, $\mathrm{d}_{\text {provided }}>\mathrm{d}_{\text {req }} \quad(\mathrm{Ok})$.
$+\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{M}}{\emptyset \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)}=\frac{56.823 * 12 * 1000}{0.9 * 60000 *\left(8-\frac{0.81}{2}\right)}=1.66$ in $^{2}($ Controlling $)$
And, $\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}} \mathrm{b}}=\frac{1.66 * 60}{0.85 * 3 * 48}=0.81 \mathrm{in}$
Use $2 \emptyset 28 \mathrm{~mm}$ cont. $\mathrm{A}_{\text {s given }}=2 * 0.95=1.9 \mathrm{in}^{2}$
Again, $-\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{M}}{\phi \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-\frac{a}{2}\right)}=\frac{88.391 * 12 * 1000}{0.9 * 60000 *\left(8-\frac{1.27}{2}\right)}=2.67 \mathrm{in}^{2}$ (Controlling)
And, $a=\frac{\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}}=\frac{2.6 * 60}{0.85 * 3 * 48}=1.27 \mathrm{in}$
Use 2 Ø 28 mm cont. +2 Ø 20 mm extra over support. $\mathrm{A}_{\text {s given }}=2 * 0.95+2 * 0.48=2.86 \mathrm{in}^{2}$ (Continuing 70\% of steel area)
$\mathrm{A}_{\mathrm{s} \text { min }}=\frac{200}{\mathrm{f}_{\mathrm{y}}} \times \mathrm{bd}=\frac{200}{60000} \times 12 \times 8=0.32 \mathrm{in}^{2}$
(For reinforcement details see Figure 2.9)

Example \#07:

Simplified design of a beam (Shear design)

Solution: The example illustrates the simple procedure for selecting stirrups design values for V_{c} and V_{s}.
(1) Design data: $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}, \mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}, \mathrm{W}_{\mathrm{u}}=7 \mathrm{kips} / \mathrm{ft}$.
(2) Beam dimensions: $\mathrm{b}_{\mathrm{w}}=12 \mathrm{in}, \mathrm{d}=24 \mathrm{in}$.
(3) Calculations:

$\mathrm{V}_{\mathrm{u}} @$ column centerline:	$\mathrm{W}_{\mathrm{u}} * 1 / 2=7 * 24 / 2=84.0 \mathrm{kips}$
$\mathrm{V}_{\mathrm{u}} @$ face of support:	$84-1.17(7)=75.8 \mathrm{kips}$
$\mathrm{V}_{\mathrm{u}} @$ d from support face (critical section):	$75.8-2(7)=61.8 \mathrm{kips}$
$\left(\varnothing \mathrm{V}_{\mathrm{c}}+\emptyset \mathrm{V}_{\mathrm{s}}\right)_{\text {max }}:$	$0.48 \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0.48(12)(24)=138.2 \mathrm{kips}$
$\emptyset \mathrm{V}_{\mathrm{c}}:$	$0.095 \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0.095(12)(24)=27.4 \mathrm{kips}$
$\emptyset \mathrm{V}_{\mathrm{c}} / 2:$	$0.048 \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0.048(12)(24)=13.80 \mathrm{kips}$

(The calculations come from ACI Code (Table 2.11))

Since 138.2 kips > 61.8 kips, beam size is adequate for shear strength.

Figure A.13: Simplified method for stirrup spacing (Example \#07).
$\emptyset \mathrm{V}_{\mathrm{s}}$ for No. 3 stirrups at $\mathrm{d} / 2, \mathrm{~d} / 3$, and $\mathrm{d} / 4$ are scaled vertically from $\emptyset \mathrm{V}_{\mathrm{c} \text {. }}$ The horizontal intersection of the $\emptyset \mathrm{V}_{\mathrm{s}}$ values ($20 \mathrm{kips}, 30 \mathrm{kips}$, and 40 kips) with the shear diagram automatically sets the distances where the No. 3 stirrups should be spaced at $\mathrm{d} / 2, \mathrm{~d} / 3$, and $\mathrm{d} / 4$. The exact numerical values for those horizontal distances are calculated as follows (although scaling from the sketch is close enough for practical design):

No. $3 @ \mathrm{~d} / 4=6 \mathrm{in} .:(75.8-57.4) / 7=2.63 \mathrm{ft}(31.5 \mathrm{in}$.) use $6 @ 6 \mathrm{in}$.

$$
\begin{aligned}
& @ \mathrm{~d} / 3=8 \mathrm{in} .: \quad(57.4-47.4) / 7=1.43 \mathrm{ft}(17.0 \mathrm{in} .) \text { use } 2 @ 8 \mathrm{in} . \\
& @ \mathrm{~d} / 2=12 \mathrm{in} .: \quad(47.4-13.8) / 7=4.8 \mathrm{ft}(57.6 \mathrm{in} .) \quad \text { use } 5 @ 12 \mathrm{in} .
\end{aligned}
$$

A more practical solution may be to eliminate the 2 @ 8 in. and use $9 @ 6$ in. and $5 @ 12$ in.

Table A. 01 (a): Design loads for various occupancy (According to ASCE). ${ }^{[\text {A.1] }}$

Occupancy or Use	Uniform pst $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Conc. lbs (kN)
Apartments (see residential)		
Access floor systems Office use Computer use	$\begin{gathered} 50(2.4) \\ 100(4.79) \end{gathered}$	$\begin{aligned} & 2000(8.9) \\ & 2000(8.9) \end{aligned}$
Armories and drill rooms	150 (7.18)	
Assembly areas and theaters Fixed seats (fastened to floor) Lobbies Movable seats Platforms (assembly) Stage floors	$\begin{aligned} & 60(2.87) \\ & 100(4.79) \\ & 100(4.79) \\ & 100(4.79) \\ & 150(7.18) \end{aligned}$	
Balconies (exterior) On one- and two-family residences only, and not exceeding $100 \mathrm{ft}^{2}\left(9.3 \mathrm{~m}^{2}\right)$	$\begin{gathered} 100(4.79) \\ 60(2.87) \end{gathered}$	
Bowling alleys, poolrooms, and similar recreational areas	75 (3.59)	
Catwalks for maintenance access	40 (1.92)	300 (1.33)
Corridors First floor Other floors, same as occupancy served except as indicated	100 (4.79)	
Dance halls and ballrooms	100 (4.79)	
Decks (patio and roof) Same as area served, or for the type of occupancy accommodated		
Dining rooms and restaurants	100 (4.79)	
Dwellings (see residential)		
Elevator machine room grating (on area of $4 \mathrm{in} .^{2}\left(2580 \mathrm{~mm}^{2}\right)$)		300 (1.33)
Finish light floor plate construction (on area of $1 \mathrm{in} .^{2}\left(645 \mathrm{~mm}^{2}\right)$)		200 (0.89)
Fire escapes On single-family dwellings only	$\begin{aligned} & 100(4.79) \\ & 40(1.92) \end{aligned}$	
Fixed ladders		See Section 4.4
Garages (passenger vehicles only) Trucks and buses	$40(1.92)$	Note (1)

(continued)

Table A. 01 (b): Design loads for various occupancy (According to ASCE).

Occupancy or Use	Uniform psf ($\mathrm{kN} / \mathrm{m}^{2}$)	Conc. Ibs (kN)
Grandstands (see stadium and arena bleachers)		
Gymnasiums, main floors, and balconies	100 (4.79) Note (4)	
Handrails, guardrails, and grab bars	See Se	
Hospitals Operating rooms, laboratories Private rooms Wards Corridors above first floor	$\begin{aligned} & 60(2.87) \\ & 40(1.92) \\ & 40(1.92) \\ & 80(3.83) \end{aligned}$	$\begin{aligned} & 1000(4.45) \\ & 1000(4.45) \\ & 1000(4.45) \\ & 1000(4.45) \end{aligned}$
Hotels (see residential)		
Libraries Reading rooms Stack rooms Corridors above first floor	$\begin{gathered} 60(2.87) \\ 150(7.18) \text { Note }(3) \\ 80(3.83) \end{gathered}$	$\begin{aligned} & 1000(4.45) \\ & 1000(4.45) \\ & 1000(4.45) \end{aligned}$
Manufacturing Light Heavy	$\begin{gathered} 125(6.00) \\ 250(11.97) \end{gathered}$	$\begin{gathered} 2000(8.90) \\ 3000(13.40) \end{gathered}$
Marquees and canopies	75 (3.59)	
Office buildings File and computer rooms shall be designed for heavier loads based on anticipated occupancy Lobbies and first floor corridors Offices Corridors above first floor	$\begin{gathered} 100(4.79) \\ 50(2.40) \\ 80(3.83) \end{gathered}$	$\begin{aligned} & 2000(8.90) \\ & 2000(8.90) \\ & 2000(8.90) \end{aligned}$
Penal institutions Cell blocks Corridors	$\begin{gathered} 40(1.92) \\ 100(4.79) \end{gathered}$	
Residential Dwellings (one- and two-family) Uninhabitable attics without storage Uninhabitable attics with storage Habitable attics and sleeping areas All other areas except stairs and balconies Hotels and multifamily houses Private rooms and corridors serving them Public rooms and corridors serving them	$\begin{aligned} & 10(0.48) \\ & 20(0.96) \\ & 30(1.44) \\ & 40(1.92) \\ & 40(1.92) \\ & 100(4.79) \end{aligned}$	
Reviewing stands, grandstands, and bleachers	100 (4.79) Note (4)	
Roofs	See Sections 4.3 and 4.9	

Table A. 01 (c): Design loads for various occupancy (According to ASCE).

Occupancy or Use	Uniform pst ($\mathrm{kN} / \mathrm{m}^{2}$)	Conc. lbs (kN)
Schools		
Classrooms	40 (1.92)	1000 (4.45)
Corridors above first floor	80 (3.83)	1000 (4.45)
First floor corridors	100 (4.79)	1000 (4.45)
Scuttles, skylight ribs, and accessible ceilings		200 (9.58)
Sidewalks, vehicular driveways, and yards subject to trucking	$\begin{gathered} 250(11.97) \\ \text { Note (5) } \end{gathered}$	$\begin{gathered} 8000(35.60) \\ \text { Note (6) } \end{gathered}$
Stadiums and arenas		
Bleachers	100 (4.79) Note (4)	
Fixed Seats (fastened to floor)	60 (2.87) Note (4)	
Stairs and exit-ways	100 (4.79)	Note (7)
One- and two-family residences only	40 (1.92)	
Storage areas above ceilings	20 (0.96)	
Storage warehouses (shall be designed for heavier loads if required for anticipated storage)		
Light	125 (6.00)	
Heavy	250 (11.97)	
Stores		
Retail		
First floor	100 (4.79)	1000 (4.45)
Upper floors	75 (3.59)	1000 (4.45)
Wholesale, all floors	125 (6.00)	1000 (4.45)
Vehicle barriers	See Section 4.4	
Walkways and elevated platforms (other than exit-ways)	60 (2.87)	
Yards and terraces, pedestrians	100 (4.79)	

Notes
(1) Floors in garages or portions of building used for the storage of motor vehicles shall be designed for the uniformly distributed live loads of Table 4-1 or the following concentrated load: (1) for garages restricted to passenger vehicles accommodating not more than nine passengers, $3000 \mathrm{lb}(13.35 \mathrm{kN}$) acting on an area of 4.5 in . by 4.5 in . (114 mm by 114 mm , footprint of a jack); (2) for mechanical parking structures without slab or deck which are used for storing passenger car only, 2250 Ib (10 kN) per wheel.
(2) Garages accommodating trucks and buses shall be designed in accordance with an approved method, which contains provisions for truck and bus loadings.
(3) The loading applies to stack room floors that support nonmobile, double-faced library bookstacks subject to the following limitations:
a. The nominal bookstack unit height shall not exceed 90 in . $(2290 \mathrm{~mm}$);
b. The nominal shelf depth shall not exceed 12 in . (305 mm) for each face; and
c. Parallel rows of double-faced bookstacks shall be separated by aisles not less than 36 in. (914 mm) wide.
(4) In addition to the vertical live loads, the design shall include horizontal swaying forces applied to each row of the seats as follows: 24 ibd linear ft of seat applied in a direction parallel to each row of seats and 10 lbs linear ft of seat applied in a direction perpendicular to each row of seats. The parallel and perpendicular horizontal swaying forces need not be applied simultaneously.
(5) Other uniform loads in accordance with an approved method, which contains provisions for truck loadings, shall also be considered where appropriate.
(6) The concentrated wheel load shalt be applied on an area of 4.5 in . by 4.5 in . (114 mm by 114 mm , footprint of a jack).
(7) Minimum concentrated load on stair treads (on area of $4 \mathrm{in}^{2}\left(2580 \mathrm{~mm}^{2}\right)$) is $300 \mathrm{lbs}(1.33 \mathrm{kN})$.

Table A.02: Design loads for various occupancy (According to BNBC). ${ }^{[A .2]}$

BUILDING			$\begin{array}{\|c\|} w^{(1)} \\ k N / m^{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline P^{(2)} \\ \mathrm{kN} \\ \hline \end{array}$	BUILDING				$w_{\mathrm{kN} / \mathrm{m}^{2}}{ }^{(1)}$	$\begin{aligned} & P^{(2)} \\ & \mathrm{kN} \end{aligned}$										
Occupancy		Use of floor			Occupancy		Use of floor													
		1 Room, internal corridor, private stair 2 External stair and corridor	2.0 3.0	1.8 2.7			1 General office room, banking hall Laboratory, kitchen 3 Computer, bussiness machine room 4 File room, filing and storage space 5 Vaults in office and bank 6 Telephone exchange		3.0 3.0 3.5	$\begin{aligned} & 9.0^{(5)} \\ & 4.5 \\ & 9.0^{(5)} \end{aligned}$										
ह	믚	1 Bed room, living room, bath room, toilet, dressing room 2 Office room	2.0 2.5	1.8 2.7					6.0 5.0 6.0	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \\ 4.5 \\ \hline \end{array}$										
		3 Cafeteria, restaurant, kitchen, laundry, lobby, lounge, game room, dining hall, balcony. 4 Corridor, retail store, staircase	3.0 4.0	4.5 4.5			1 Retail store 2 Wholesale store 3 Storage: light heavy		4.0 6.0 6.0 12.0	$\left\|\begin{array}{l} 3.6 \\ 13.0^{(5)} \\ 4.5 \\ 14.0^{(5)} \end{array}\right\|$										
	$\begin{aligned} & \text { 욜 } \\ & \text { 퓨 } \\ & \text { inㄹ } \end{aligned}$	6 Garage, car parking floor, ramp (See Occupancy - K)				Workshop, factory, warehouse	1 Light workroom without storage 2 Machinery hall \& circulation area		4.0	$\begin{gathered} 2.7 \\ 4.5 \end{gathered}$										
		1 Bed room, dressing room, toilet, hospital ward and cabin, cell blocks of jail	2.0	1.8				Factory, workshop etc. Manufacturing : light heavy ice	5.0 6.0 12.0	4.5 4.5 $9.0^{(5)}$										
			2.5	2.7			5 Printing plant : Press room		15.0	(s)										
		3 X-ray room, operating room, utility room, reading room without book storage.	2.5	4.5				Press room Composing and linotype room	7.0 5.0	11.0 $9.0{ }^{(5)}$ $9.0{ }^{(5)}$										
		4 Class room, lecture room, lounge. cafeteria, restaurant.	3.0	2.7			6 Motor room, fan room etc. including the weight of machinery		12	(5)										
		5 Laboratory, kitchen, laundr	3.0	4.5																
		6 Balcony, corridor, lobby, reading room with book storage, staircase	4.0	4.5				7 Cold storage, grain storage 8 Storage warchouses : light	15.0	$\begin{aligned} & 9.0{ }^{(5)} \\ & 0) \end{aligned}$										
		room with book storage, staircase 7 Assembly area, fire escape, store room, projection room.	5.0	4.5			$9 \text { Foundries heavy }$		6.0 12.0 20.0	$\begin{aligned} & 4.5 \\ & 9.0 \\ & 12.0 \end{aligned}$										
							1 Repair workshop for all types of vehicles. 2 Driveway, ramp and parking for vehicles with mass $>2500 \mathrm{~kg}$. 3 Car parking and ramp for passenger car and light vehicles having mass $\leq 2500 \mathrm{~kg}$		5.0	9.0										
		1 Assembly room: with fixed seat without fixed seat 2 Stages and projection room 3 Library:	3.0 5.0 5.0	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 4.5 \end{aligned}$					5.0 2.5	$\begin{aligned} & -^{(4)} \\ & Z^{(4)} \end{aligned}$										
		Reading room without book storage with book storage Stack room for book	2.5 4.0 6.5	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 7.0 \end{aligned}$			1 Bed room, toilet, dressing room 2 Office room, staff room 3 Kitchen, laundry, lounge, game room, cafeteria, restaurant		2.0 2.5 3.0	1.8 2.7 4.5										
		1 With fixed seats 2 Without fixed seats 3 Corridor, stair and passage way	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 4.5 \end{aligned}$			4 Balcony, corridor, passage way. retail store, staircase 5 Assembly area, store room, fire escape, projection room 6 Drill room, drill hall 7 Armories, boiler room and machine room including weight of machinery 8 Airport hangars		4.0	4.5										
									5.0	4.5										
									5.0	0										
									7.5 7.0	4.5 $12.0^{(5)}$										
Note : (1) w : Uniformly distributed load in $\mathrm{kN} / \mathrm{m}^{2}$. This load shall not be applied simultaneously with the concentrated load, P. (2) P : A single concentrated load, in kN , assumed to act over an area of $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ unless otherwise specified in Note (5) below. Except as indicated by Note (5), these concentrated loads need not be considered for the floors capable of laterally distributing the load, e.g. reinforced concrete slabs (3) Use a distributed load of $2.4 \mathrm{kN} / \mathrm{m}^{2}$ for each metre of stack height but not less than $6.5 \mathrm{kN} / \mathrm{m}^{2}$. (4) See Sec 2.3.3.2 for values, numbers, and spacing of these concentrated loads. (5) These loads shall be applied over an area of $750 \mathrm{~mm} \times 750 \mathrm{~mm}$ on all types of floors including reinforced concrete slab.																				

Table A. 03 (a): Design loads for various occupancy (According to IBC). ${ }^{[A .3]}$

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (lbs.)
1. Apartments (see residential)	-	-
2. Access floor systems Office use Computer use	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 2,000 \\ & 2,000 \end{aligned}$
3. Armories and drill rooms	150 m	-
4. Assembly areas Fixed seats (fastened to floor) Follow spot, projections and control rooms Lobbies Movable seats Stage floors Platforms (assembly) Other assembly areas	$\begin{gathered} 60^{\mathrm{m}} \\ 50 \mathrm{~m} \\ 100^{\mathrm{m}} \\ 100^{\mathrm{m}} \\ 150^{\mathrm{m}} \\ 100^{\mathrm{m}} \\ 100^{\mathrm{m}} \end{gathered}$	-
5. Balconies and decks ${ }^{\text {h }}$	Same as occupancy served	-
6. Catwalks	40	300
7. Cornices	60	-
8. Corridors First floor Other floors	100 Same as occupancy served except as indicated	-
9. Dining rooms and restaurants	100 m	-
10. Dwellings (see residential)	-	-
11. Elevator machine room grating (on area of 2 inches by 2 inches)	-	300
12. Finish light floor plate construction (on area of 1 inch by 1 inch)	-	200
13. Fire escapes On single-family dwellings only	$\begin{gathered} 100 \\ 40 \end{gathered}$	-
14. Garages (passenger vehicles only) Trucks and buses	40^{m} See Se	Note a 1607.7
15. Handrails, guards and grab bars	See Se	ction 1607.8
16. Helipads	See Se	tion 1607.6
17. Hospitals Corridors above first floor Operating rooms, laboratories Patient rooms	$\begin{aligned} & 80 \\ & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 1,000 \\ & 1,000 \end{aligned}$
18. Hotels (see residential)	-	-
19. Libraries Corridors above first floor Reading rooms Stack rooms	$\begin{gathered} 80 \\ 60 \\ 150^{\mathrm{b} . \mathrm{m}} \end{gathered}$	$\begin{aligned} & 1,000 \\ & 1,000 \\ & 1,000 \end{aligned}$
20. Manufacturing Heavy Light	$\begin{aligned} & 250^{\mathrm{m}} \\ & 125^{\mathrm{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & 3,000 \\ & 2,000 \end{aligned}$
21. Marquees	75	-
22. Office buildings Corridors above first floor File and computer rooms shall be designed for heavier loads based on anticipated occupancy Lobbies and first-floor corridors Offices	$\begin{gathered} 80 \\ - \\ 100 \\ 50 \end{gathered}$	$\begin{gathered} 2,000 \\ - \\ 2,000 \\ 2,000 \end{gathered}$

(continued)

Table A. 03 (b): Design loads for various occupancy (According to IBC).

\begin{tabular}{|c|c|c|}
\hline OCCUPANCY OR USE \& UNIFORM (psf) \& \begin{tabular}{l}
CONCENTRATED \\
(lbs.)
\end{tabular} \\
\hline 23. Penal institutions Cell blocks Corridors \& \[
\begin{gathered}
40 \\
100
\end{gathered}
\] \& - \\
\hline \begin{tabular}{l}
24. Recreational uses: \\
Bowling alleys, poolrooms and similar uses \\
Dance halls and ballrooms \\
Gymnasiums \\
Reviewing stands, grandstands and bleachers \\
Stadiums and arenas with fixed seats (fastened to floor)
\end{tabular} \& \[
\begin{aligned}
\& 75^{\mathrm{m}} \\
\& 100^{\mathrm{m}} \\
\& 100^{\mathrm{m}} \\
\& 100^{\mathrm{c} \cdot \mathrm{~m}} \\
\& 60^{\mathrm{c}, \mathrm{~m}}
\end{aligned}
\] \& - \\
\hline \begin{tabular}{l}
25. Residential \\
One- and two-family dwellings Uninhabitable attics without storage \({ }^{i}\) Uninhabitable attics with storage \({ }^{\mathrm{i}, \mathrm{j} \cdot \mathrm{k}}\) Habitable attics and sleeping areas \({ }^{k}\) All other areas Hotels and multifamily dwellings Private rooms and corridors serving them \\
Public rooms \({ }^{\mathrm{m}}\) and corridors serving them
\end{tabular} \& \begin{tabular}{l}
10 \\
20 \\
30 \\
40 \\
40 \\
100
\end{tabular} \& - \\
\hline \begin{tabular}{l}
26. Roofs \\
All roof surfaces subject to maintenance workers \\
Awnings and canopies: \\
Fabric construction supported by a skeleton structure \\
All other construction \\
Ordinary flat, pitched, and curved roofs (that are not occupiable) \\
Where primary roof members are exposed to a work floor, at single panel point of lower chord of roof trusses or any point along primary structural members supporting roofs: Over manufacturing, storage warehouses, and repair garages \\
All other primary roof members \\
Occupiable roofs: \\
Roof gardens \\
Assembly areas \\
All other similar areas
\end{tabular} \& 5
nonreducible
20
20

100
100^{m}

Note 1 \& | 2,000 |
| :--- |
| 300 |
| Note 1 |

\hline 27. Schools Classrooms Corridors above first floor First-floor corridors \& $$
\begin{gathered}
40 \\
80 \\
100
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 1,000 \\
& 1,000 \\
& 1,000
\end{aligned}
$$
\]

\hline 28. Scuttles, skylight ribs and accessible ceilings \& - \& 200

\hline 29. Sidewalks, vehicular drive ways and yards, subject to trucking \& $250{ }^{\text {d, m }}$ \& $8,000^{\text {c }}$

\hline
\end{tabular}

(continued)

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (lbs.)
30. Stairs and exits		
One- and two-family dwellings All other	40	300^{f}
31. Storage warehouses (shall be designed for heavier loads if required for anticipated storage)		
Heavy	200^{f}	
Light		

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ square inch $=645.16 \mathrm{~mm}^{2}$,
1 square foot $=0.0929 \mathrm{~m}^{2}$,
1 pound per square foot $=0.0479 \mathrm{kN} / \mathrm{m}^{2}, 1$ pound $=0.004448 \mathrm{kN}$,
1 pound per cubic foot $=16 \mathrm{~kg} / \mathrm{m}^{3}$.
a. Floors in garages or portions of buildings used for the storage of motor vehicles shall be designed for the uniformly distributed live loads of Table 1607.1 or the following concentrated loads: (1) for garages restricted to passenger vehicles accommodating not more than nine passengers, 3,000 pounds acting on an area of 4.5 inches by 4.5 inches; (2) for mechanical parking structures without slab or deck that are used for storing passenger vehicles only, 2,250 pounds per wheel.
b. The loading applies to stack room floors that support nonmobile, doublefaced library book stacks, subject to the following limitations:

1. The nominal bookstack unit height shall not exceed 90 inches;
2. The nominal shelf depth shall not exceed 12 inches for each face; and
3. Parallel rows of double-faced book stacks shall be separated by aisles not less than 36 inches wide.
c. Design in accordance with ICC 300 .
d. Other uniform loads in accordance with an approved method containing provisions for truck loadings shall also be considered where appropriate.
e. The concentrated wheel load shall be applied on an area of 4.5 inches by 4.5 inches.
f. The minimum concentrated load on stair treads shall be applied on an area of 2 inches by 2 inches. This load need not be assumed to act concurrently with the uniform load.
g. Where snow loads occur that are in excess of the design conditions, the structure shall be designed to support the loads due to the increased loads caused by drift buildup or a greater snow design determined by the building official (see Section 1608).
h. See Section 1604.8.3 for decks attached to exterior walls.
i. Uninhabitable attics without storage are those where the maximum clear height between the joists and rafters is less than 42 inches, or where there are not two or more adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 inches in width, or greater, within the plane of the trusses. This live load need not be assumed to act concurrently with any other live load requirements.

Table A.04: Design loads for various occupancy (According to UBC). ${ }^{[\mathrm{A} .4]}$

USE OR OCCUPANCY		$\underset{\text { (psf) }}{\text { UNIFOAD }}$	CONCEETRATED LOAD (pounds)
Category	Description	$\times 0.0479$ for KNM^{2}	$\times 0.00448$ for kN
1. Access floor systems	Office use	50	2,000 ${ }^{2}$
	Computer use	100	2,000 ${ }^{2}$
2. Armories		150	0
3. Assembly areas ${ }^{3}$ and auditoriums and balconies therewith	Fixed seating areas	50	0
	Movable seating and other areas	100	0
	Stage areas and enclosed platorms	125	0
4. Corrices and marques		60^{4}	0
5. Exit facilities ${ }^{5}$		100	0^{6}
6. Garages	General storage and/or repair	100	7
	Private or pleasure-type motor vehicle storage	50	7
7. Hospitals	Wards and rooms	40	1,000 ${ }^{2}$
8. Libraries	Reading rooms	60	1,000 ${ }^{2}$
	Stack rooms	125	1,500 ${ }^{2}$
9. Manufacturing	Light	75	2,000 ${ }^{2}$
	Heavy	125	3,000 ${ }^{2}$
10. Offices		50	2,000 ${ }^{2}$
11. Printing plants	Press rooms	150	2,500 ${ }^{2}$
	Composing and linotype rooms	100	2,000 ${ }^{2}$
12. Residential ${ }^{8}$	Basic floor area	40	0^{6}
	Exterior balconies	60^{4}	0
	Decks	40^{4}	0
	Storage	40	0
13. Restrooms ${ }^{9}$			
14. Reviewing stands, grandstands, bleachers, and folding and telescoping seating		100	0
15. Roof decks	Same as area served or for the type of occupancy accommodated		
16. Schools	Classrooms	40	$1,000^{2}$
17. Sidewalks and driveways	Public access	250	7
18. Storage	Light	125	
	Heavy	250	
19. Stores		100	3,000 ${ }^{2}$
20. Pedestrian bridges and walkways		100	

${ }^{\text {See Section }} 1607$ for live load reductions.
${ }^{2}$ See Section 1607.3.3, first paragraph, for area of load application.
${ }^{3}$ Assembly areas include such occupancies as dance halls, drill rooms, gymnasiums, playgrounds, plazas, terraces and similar occupancies that are generally accessible to the public.
${ }^{4}$ When snow loads occur that are in excess of the design conditions, the structure shall be designed to support the loads due to the increased loads caused by drift buildup or a greater snow design as determined by the building official. See Section 1614. For special-purpose roofs, see Section 1607.4.4.
${ }^{5}$ Exit facilities shall include such uses as corridors serving an occupant load of 10 or more persons, exterior exit balconies, stairways, fire escapes and similar uses.
${ }^{6}$ Individual stair treads shall be designed to support a 300 -pound (1.33 kN) concentrated load placed in a position that would cause maximum stress. Stair stringers may be designed for the uniform load set forth in the table.
${ }^{7}$ See Section 1607.3.3, second paragraph, for concentrated loads. See Table 16-B for vehicle barriers.
${ }^{8}$ Residential occupancies include private dwellings, apartments and hotel guest rooms.
${ }^{9}$ Restroom loads shall not be less than the load for the occupancy with which they are associated, but need not exceed 50 pounds per square foot $\left(2.4 \mathrm{kN} / \mathrm{m}^{2}\right)$.

Table A. 05 (a): Design loads for various occupancy (According to Euro Code). ${ }^{\text {[A.5] }}$

Category	Specific use	Example
A	Areas for domestic and residential activities	Rooms in residential buildings and houses; bedrooms and wards in hospitals; bedrooms in hotels and hostels kitchens and toilets.
B	Office areas	
C	Areas where people may congregate (with the exception of areas defined under category A, B and D ${ }^{11}$)	C1: Areas with tables, etc e.g. areas in schools, cafes, restaurants, dining halls, reading rooms, receptions C2: Areas with fixed seats, e.g. areas in churches, theatres or cinemas, conference rooms, lecture halls, assembly halls, waiting rooms, railway waiting rooms. C3: Areas without obstacles for moving people, e.g. areas in museums, exhibition rooms, etc. and access areas in public and administration buildings, hotels, hospitals, railway station forecourts C4:Areas with possible physical activities, e.g. dance halls, gymnastic rooms, stages . C5:Areas susceptible to large crowds, e.g. in buildings for public events like concert halls, sports halls including stands, terraces and access areas and railway platforms.
D	Shopping areas	D1: Areas in general retail shops D2: Areas in department stores.
"Attention is drawn to 6.3.1.1(2), in particular for C4 and C5. See EN 1990 when dynamic effects need to be considered. For Category E, see Table 6.3		
NOTE 1. Depending on their anticipated uses, areas likely to be categorised as C2, C3, C4 may be categorised as C5 by decision of the client and/or National annex.		

Table A. 05 (b): Design loads for various occupancy (According to Euro Code).

Categories of loaded areas	$\begin{gathered} q_{k} \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} \mathbf{Q}_{\mathrm{k}} \\ {[\mathrm{kN}]} \end{gathered}$
Category A		
- Floors	1,5 to 2,0	2,0 to 3,0
- Stairs	2,0 to 4,0	2,0 to 4,0
- Balconies	2,5 to 4,0	2,0 to 3,0
Category B	2,0 to 3,0	1, 5 to 4.5
Category C		
- C1	2,0 to 3,0	3,0 to 4,0
- C2	3,0 to 4,0	2,5 to 7,0 (4,0)
- C3	3,0 to 5,0	4,0 to 7,0
- C4	4,5 to 5,0	3,5 to 7,0
- C5	5,0 to 7,5	3,5 to $\underline{4,5}$
Category D		
-D1	4,0 to 5,0	3,5 to 7,0 (4,0)
-D2	4,0 to 5.0	3,5 to 7,0

NOTE: Where a range is given in this table, the value may be set by the National annex. The recommended values, intended for separate application, are underlined. q_{k} is intended for the determination of general effects and Q_{k} for local effects. The National annex may define different conditions of use of this Table.

REFERENCES

2.1 Minimum Thicknesses for Beams and One-Way Slabs, Figure 3-1, Simplified Design of Reinforced Concrete Buildings, Mahmoud E. Kamara and Lawrence C. Novak, Fourth Edition.
2.2 Minimum Slab Thickness for Two-Way Slab Systems, Figure 4-4, Simplified Design of Reinforced Concrete Buildings, Mahmoud E. Kamara and Lawrence C. Novak, Fourth Edition.
3.1 Coefficients for Negative Moments in Slabs, Method-3, Table-1, Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-63).
3.2 Coefficients for Dead Load Positive Moments in Slabs, Method-3, Table-2, Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-63).
3.3 Coefficients for Live Load Positive Moments in Slabs, Method-3, Table-3, Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-63).
A. 1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads, Table 4-1, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, (ASCE or SEI 7-10).
A. 2 Live Loads for Various Occupancies, Table 6.2.3, Bangladesh National Building Code, (BNBC 2006).
A. 3 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads, Table 1607.1, International Building Code (ICC or IBC 2012).
A. 4 Uniform and Concentrated Loads, Table 16-A, Uniform Building Code, (UBC 1997 Volume 02).
A. 5 Imposed loads on floors, balconies and stairs in buildings, Table 6.1-6.2, Design of Concrete Structures, Euro/British Code, (EN 1991).
i) Design of Concrete Structures, George Winter, C. E. O'Rourke, L. C. Urquhart and Arthur H. Nilson, Seventh Edition.
ii) Design of Concrete Structures, Arthur H. Nilson, David Darwin and Charles W. Dolan, Thirteenth Edition.
iii) Simplified Design of Reinforced Concrete Buildings, Mahmoud E. Kamara and Lawrence C. Novak, Fourth Edition.
iv) Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-11).
v) Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-63).

[^0]: * A cross-hatched edge indicates that the slab continues across or is fixed at the support; an unmarked edge indicates a support at which torsional resistance is negligible.

[^1]: * A cross-hatched edge indicates that the slab continues across or is fixed at the support: an unmarked edge indicates a support at which torsional resistance is negligible.

